导航栏

×
你的位置: 检讨书大全 > 学生检讨书 > 导航

数学史课件|数学史课件(精选16篇)

发表时间:2023-06-15

数学史课件(精选16篇)。

数学史课件(1)

数学是几千年来人类智慧的结晶,书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,读后让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

从最早的一代数字到十进制的应用,数学总是在缓慢地进步。数学是一门复杂的学科,同时也是一门有趣的学科。数学的进步是非常缓慢的,也是非常困难的,但每一次进不去的的成就也是巨大的!

数学就是一个具有魔力的学科,他是许多人望而却步,同时也使许多人迷恋其中,耗尽毕生心血,仍无怨无悔!

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。在数学史上,有许多尚未解决的问题和猜想,都是美丽的波澜。费马猜想经过三百年的发展,终于成为费马定理;四色猜想也被计算机所征服。

哥德巴赫猜想,在两个半世纪之后,许多数学家一直在为之奋斗。虽然陈景润在前面,但最终的证明还是遥遥无期。此外,庞加莱猜想、黎曼猜想、孪生素数猜想等也刺激着数学家的神经,等待着数学家的挑战。 天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。

但正是在这样的环境下,他们依然默默地坚守着自己的信念,坚守着自己的理想。数学家的毅力是我们应该努力学习的。有了这种精神,他们可以坚持自己的立场,直到生命的最后一刻,这也许就是他们认为的幸福。回想我们自身,什么才是我们所追求的呢?

什么才是幸福呢?。 浪花是美丽的,数学更是美丽的,英国数学家罗素说过:“数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,即就像是一尊雕塑……这种美没有绘画或音乐那样华丽的装饰,他可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界。

” 这么美的东西让我们对数学有了一个新的认识!

阅读数学史让我知到数学未来的发展方向,这样我在选择上大学的时候可以选择最新的数学专业!

阅读数学史可以开阔我们的视野,提高我们的素质,激励我们努力学习,也可以激发我们学习数学的兴趣。

数学史课件(2)

此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。

数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。

作者是按如下的数学史分期为线索进行展开论述的:

一、数学的起源和发展。

二、初等数学时期。

1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。

三、近代数学时期。

四、现代数学时期。

此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革

在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。

最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。

我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。

数学史课件(3)

当我们学习了数学史之后,自然会觉的数学的发展是不合理的,或者说数学发展的实际情况与我们今天所学的数学教科书有很大的不同。今天我们中学的数学内容基本上是17世纪微积分之前的初等数学知识,而大学数学系的大部分内容是17、18世纪的高等数学。

这些数学教材业已经过千锤百炼, 是在科学性与教育要求相结合的原则指导下经过反复编写的, 是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法, 而弥补这方面不足的最好途径就是通过数学史的学习。 在一般人看来, 数学是一门枯燥无味的学科, 因而很多人视其为畏途, 从某种程度上说, 这是由于我们的数学教科书教授的往往是一些僵化的、 一成不变的数学内容, 如果在数学教学中渗透数学史内容而让数学活起来, 这样便可以激发学生的学习兴趣, 也有助于学生对数学概念、方法和原理的理解与认识的深化。 科学史是一门文理交叉学科, 从今天的教育现状来看, 文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会, 正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。

通过对数学史的研究,使数学系学生接受数学训练,获得人文修养。文科或其它专业的学生通过学习数学史,可以了解数学的一般情况,掌握数学的修养。 而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。 中国数学有着悠久的历史,14 世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映, 交替影响世界数学的发展。

由于种种复杂的原因,16世纪后中国成为数学的潮级大国,经历了漫长而艰难的发展过程,才逐渐融入现代数学的潮流。 由于教育上的失误, 致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就、中国现代数学落后的原因、中国现代数学研究的现状以及与发达国家数学的差距,从而激发学生的爱国热情和爱国主义精神振兴民族科学。

《数学家徐利治的故事》,知道了徐老先生在数学上为祖国做出了贡献,他写的许多论文在国际上引起了反响,他还培养出一批成材的学生。 徐老先生为什么能成为数学家?为什么能做出这样大的贡献?

原因之一, 就是他小时候不怕困难,刻苦学习。文章里写道:“他在读书时常把伯父给他的午饭钱省下来,用来买书和买练习本,为了节省用纸,他常用手指在睡觉的凉席上练字,夜深人静,同学们早已进入甜蜜的梦乡,徐利治却来到走廊,在灯光下认真地学习。

白天,他泡在图书馆里用馒头、白开水充饥……”可以看出,徐老先生小时候学习条件很不好,连买书、买练习本的钱都缺乏,只好节省午饭钱,然而,他勤奋学习,并不因学习条件差而气馁。 在我们这时代,家庭生活比较富裕,很多家只有一个孩子,零花钱比较多,这些钱我们不是去打电子游戏,就是去买好吃的。平时也很浪费。一张纸要么写了几个字就扔掉,要么用折纸机玩。我一点也不知道怎么保存。

在学习上,现在很多学生学习不努力,学习的目的不明确,我也是,做问题有点困难就会气馁。 我们的学习态度和徐老先生那种废寝忘食的学习精神相比, 真有十万八千里的差距。

数学史课件(4)

读完《数学史》,心底不由得一阵感动。数学殿堂有多华丽?我们厚厚的高中课本里有多少前人的探索?未来的数学史会因为我们的发现和创造而被改写吗?

数学,似乎是一个枯燥的学科,但是,却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具……是的,数学是一个“工具箱”!那么,前辈们是如何让这个工具更人性化,让我们更好地使用它的呢?看完《数学史》,我知道了许多。

数学的历史源远流长。我了解到,在早期人类社会,数学与语言、艺术和宗教一起构成了人类最早的文明。数学是最抽象的科学,而最抽象的数学可以孕育出人类文明的灿烂花朵。

这便使数学成为人类文化中最基础的工具。在现代社会,数学为科学和社会的发展提供了不可或缺的理论和技术支持。

数学的发展决非一帆风顺。这是一部充满犹豫、犹豫、历经艰难曲折,甚至面临困难和战争危机的情景喜剧。在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。

第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?是他,希帕索斯,首先发现了非理性数字,开始质疑隐藏在它们背后的神奇数字。

从那时起,非理性数字已经成为数字家庭的一员。推理和证明战胜了直觉和经验,一个广阔的世界出现在我们面前。但是,希帕苏斯却被无情地抛进了大海。然而,历史永远不会忘记他。尽管海浪已经淹没了他的身体,但我们今天仍然保留着他的名字——河马!

第二次数学危机——知道吗?牛顿站在巨人的肩膀上,曾经站在英国大主教伯克利面前,用颤抖的声音讲述自己的观点。没有人相信他,没有人支持他,即使他今天的观点是正确的!数学分析是建立在严格的实数理论基础上的,实数学发展的主流。

第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

数学似乎是再也站不起来了。是的,罗素的观点似乎很合理。危机过后,数学家们提出了自己的解决方案,如zf公理系统。这一问题的解决到现在还在进行中。

罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?

前文一直是外国的事件,但是,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。

数学是一门历史性或者说累积性很强的科学。主要数学理论都是在继承和发展原有理论的基础上建立起来的。它们不仅不会推翻原有的理论,而且始终包含着原有的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。

可以说,在数学漫长的进化过程中,几乎没有完全推翻以前的建筑。正是我们不断地为数学这座高楼添砖加瓦,她才能越立越高,越立越扎实!

数学史课件(5)

内容简介:

这是一位小学数学特级教师在实践中、研究后写成的书,问题导向、实践导向十分鲜明,教学案例情境化、现场感很强,真实、自然、鲜活。它是一部数学史的关注和学习者的深情回眸,充满了温情和敬意;从历史出发,放眼当下,把现实与数学史联系起来,充满深邃的思考;展望未来,小学数学教育充满了美好的想象。

将数学史融入小学数学课堂:1。数学史告诉我们,任何数学概念、公式、定理和思想都不是从天而降的,而是有其发生和发展的自然过程。

以史为鉴,方能确保课堂上每一种新知识的产生是自然而然、水到渠成的,既符合学生的认知基础,又激发了学生的学习动机。2、获取**之乐。数学史蕴含着丰富多彩的问题、思想及方法,我们可以借鉴数学史为学生提供**机会,让他们经历知识的发生发展过程,积累数学活动经验,获取成功的体验。

3、展示文化之魅。当数学史融入数学教学史,人的因素在课堂上得到了恢复。当学生学会用字母表达数字时,他们知道丢番图和吠陀;在学习圆面积公式时,我们知道开普勒;学习十进制时,我知道分数的故事等等。从学生的知性微笑中,我们可以看到数学文化创造的不同课堂。

4、彰显德育之效。在数学史融入数学教学的过程中,数学家似乎是班级里一名“额外”的学生,而每一位学生在不知不觉中都成了数学家。跨时空的交流使学生贴近数学,热爱数学,树立学习自信,成为数学学习的主人。

精彩分享

该书分10个篇幅:

1、 识别历史上儿童的学习障碍;

二、让历史来言“教什么”;

3、 以历史为镜,捕捉知识的核心价值;

4、 历史的方向是教学努力的方向;

五、读史犹如拼图;

六、数学史的链接、再现与融入;

7、 课堂上的历史只能是那些经典的步骤;

8、 了解历史,了解定义是多么苍白;

九、争论,在历史前面都会噤声;

10、 有些原因只能用历史来回答。

1、关于概念与思维。数学老师不是数学家。他们不需要在教学中创造概念,但他们需要创造学生对概念的理解。对于概念来说,定义是重要的。

但是对于概念的学习来说,概念的意义比概念的定义更为重要。学习关键概念的实质是改造人,即重组人的经验世界,拓宽人的认知领域,增强人的数学思维能力。在原本两个不相干的概念、定理、公式间揭示新的联系,一定是因为有了新的数学概念、新的数学方法、新的数学认识。

数学史课件(6)

————读李文林《数学史概论》有感

光阴似箭,岁月如梭,一晃自己的教学生涯已经过去了六年,回想这六年来的点点滴滴,自己收获了些什么呢?茫然之时翻开大学时数学专业学生的必修课本——《数学史》,慢慢品味之后才觉其乐无穷,原来我上了四年大学根本没仔细读过这本数学上品,原来自己教了六年高中数学却对数学知识的产生和发展如此陌生,对千万年来人类生活发展过程中造就的一批批数学大师和一件件数学趣事了解很少,沉下心来仔细品味这本曾经被遗忘的书后,才对它有了比较深刻的认识。

著名数学家陈省身曾说过:“了解历史的变化是了解这门科学的一个步骤。”任何一门学问都不是从来就有的,都是在人们的实践中逐渐产生的,都有其形成、发展、成熟和完善的阶段。

数学做为自然科学中的一门重要学科,其发展经历了从零散到系统的过程。在一般人看来,与充满智慧的社会科学相比,数学就是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。

数学的发展并非不合逻辑。换言之,数学发展的实际情况与我们今天所学的数学教科书有很大的不同。今天我们中学的数学内容基本上是17世纪微积分之前的初等数学知识,而大学数学系的大部分内容是17、18世纪的高等数学。这些数学教材也已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习,让学生更多的了解数学知识的产生和发展。

数学的历史源远流长 。李先生的《数学史概论》有许多同类史书所不能企及的特点。比如:

本书有着同类书中的最大的空间跨度和时间跨度。从古巴比伦、希腊、中国、阿拉伯世界,乃致当代数学,全世界都对数学的贡献和影响有了合理的评价。数学的发展史分阶段的,研究者根据一定的原则将数学史分为几个阶段。

目前学术界通常将数学发展划分为以下五个时期 : 数学萌芽期( 公元前600年以前 )、初等数学时期( 公元前600年至17世纪中叶 )、变量数学时期( 17世纪中叶至19世纪20年代 )、近代数学时期( 19世纪20年代至第二次世界大战 )、现代数学时期( 20世纪40年代以来 )。与自然科学相比 ,数学科学具有悠久的历史 ,数学更是积累性科学 ,其概念和方法更具有延续性 ,比如古代文明中形成的十进位值制记数法和四则运算法则 ,我们今天仍在使用 ,诸如费尔马猜想 、哥德**猜想等历史上的难题 ,长期以来一直是现代数论领域中的研究热点 ,数学传统与数学史材料可以在现实的数学研究中获得发展 。

许多著名的数学大师都有着深厚的数学史修养或研究,善于从史料中汲取养分,使过去为现在服务,使新的产生。科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴 ,以使我们明确科学研究的方向以少走弯路或错路 ,为当今科技发展决策的制定提供依据 ,也是我们预见科学未来的依据 。对数学史有更多的了解,不会导致我们去解决“三等角画图”这样荒谬的事情,以免在这样的问题上浪废时间和精力。

数学史是研究数学科学的发生、发展及其规律的科学。简而言之,这就是数学史。它不仅追溯数学内容 、思想和方法的演变 、发展过程 ,而且还探索影响这种过程的各种因素 ,它不单纯是一种形式化的结果 ,运用辨证唯物主义的观点看待 ,在它的形成和发展过程中 ,不但表现出矛盾运动的特点 。因此,数学史的研究对象不仅包括具体的数学内容,而且涉及历史、哲学、文化学、宗教等社会科学和人文学科,是一门交叉学科。

从教育的现状来看,正是由于科学史的跨学科性质,它在文理交流中的作用才得以显现。通过对数学史的研究,使数学系学生接受数学训练,获得人文素养。文科或其它专业的学生可以通过学习数学史,了解数学的一般情况,获得数学的培养。在历史上,数学家的成就和品德对青少年人格的培养将起到非常重要的作用。

在早期人类社会,数学、语言、艺术和宗教构成了人类最早的文明。数学是最抽象的科学,而最抽象的数学可以孕育出人类文明的灿烂花朵。这使数学成为人类文化中最基础的学科 。

对此恩格斯指出 :“数学在一门科学中的应用程度 ,标志着这门科学的成熟程度 。”在现代社会中 ,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持 。

中国数学也有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于种种复杂的原因,16世纪后中国成为数学的潮级大国,经历了漫长而艰难的发展过程,才逐渐融入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。

数学史可以使学生了解中国古代数学的辉煌成就、中国现代数学落后的原因、中国现代数学研究的现状和与发达国家数学的差距,从而激发学生的爱国热情和爱国主义精神振兴民族科学。

《数学家徐利治的故事》,知道了徐老先生在数学上为祖国做出了贡献,他写的许多**在国际上引起了反响,他还培养出一批成材的学生。 徐老先生为什么能成为数学家?为什么能做出这样大的贡献?

原因之一是他小时候不怕困难,努力学习。文章里写道:“他在读书时常把伯父给他的午饭钱省下来,用来买书和买练习本,为了节省用纸,他常用手指在睡觉的凉席上练字,夜深人静,同学们早已进入甜蜜的梦乡,徐利治却来到走廊,在灯光下认真地学习。

白天,他泡在图书馆里用馒头、白开水充饥……”可以看出,徐老先生小时候学习条件很不好,连买书、买练习本的钱都缺乏,只好节省午饭钱,然而,他勤奋学习,并不因学习条件差而气馁。然而,在我们这个时代,家庭生活相对富裕,很多家庭只有一个孩子,还有更多的零花钱。这些钱不是用来玩电子游戏,就是用来买好吃的。平时也很浪费。一张纸要么写了几个字就扔掉,要么用折纸机玩。我一点也不知道怎么保存。

在学习上,现在很多学生学习不努力,学习目的不明确,有点难做的问题就灰心了。我们的学习态度和徐老先生那种废寝忘食的学习精神相比,真有十万八千里的差距,我想,如果能在平时的教学活动中将这些发生在数学大师身边的故事讲给孩子们听将会是怎样的效果。

书能洗涤人得灵魂,是的,这本书让我认识了人类认识世界的能力、明白了大师们之所以成为大师的原因,思索如何将这些让人感觉不可思议的桩桩件件用来激励自身的成长,用大师们博大的胸怀去认识世界创造未来,更或者将书中之所学在平时的教学中交给我的学生,让其明白学习原来如此。

数学史课件(7)

在任何起点上要想学好数学,我们需要先理解相关问题,然后才能赋予答案的意义 ——引言

数学, 似乎是一个枯燥的学科,但却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具...是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《这才是好读的数学史》后,我知道了许多。

《这才是好读的数学史》介绍了数学从有记载的源头,到最初的算数,再到代数、几何等领域不断地深入化发展的历史过程。本书按照历史发展顺序,先后介绍了数学的开端,古希腊的数学,古印度的数学,古阿拉伯的数学,中世纪欧洲的数学,十五和十六世纪的代数学。

在人类对于数学漫漫求索之路上,诞生了许多古代文化,而这些古代文化发展了各种各样的数学 。其中,古代伊拉克的历史跨越了数千年,它包括了许多文明,如苏美尔,巴比伦,亚述,波斯和希腊文明。所偶有这些文明都了解并使用数学,但有很多变化。在这儿不得不提到的是古希腊数学。在此之前,各个文明运用数学仅仅是用来协助、解决一些简单的生活问题,有时不就此满足的人们也会有简单的探索,但希腊的数学家们是独一无二的,他们将逻辑推理和证明作为数学中心,也是正因如此,他们永远改变了运用数学的意义。

数学源于生活却高于生活。如今的数学在生活中被广泛的运用,一起热爱数学吧!向为数学做出巨大奉献的前人们致敬!

数学史课件(8)

2.曹冲称象

老师:这是一个我们从小学开始就熟悉的历史故事,里面包含了数学思维的一个重要方法——转化。数学思维也是数学学习的重要组成部分。我希望这篇短篇**能为学生们打开一条了解数学奥秘的道路。

当直接入手解决问题遇到困难的时候,我们可以将问题进行适当地转化,使它与我们已有的数学知识或体验接轨,从而更简便地进行求解。举一个内角和度数求解的例子,在求算四边形内角和时,可将四边形分割成两个三角形,由于我们已知三角形内角和为180?,则通过观察图形就可以得知四边形的内角和。

而求算五边形内角和时,又可将它分割成一个四边形与一个三角形来求解,以此类推,便可以求算n边形的内角和。

(学生可以计算正多边形的内角之和并体验数学变换的思维方法。)

(2) 专题报告:数学史小组交流

(老师启发完,就轮到本节课的重头戏,学生们的表现了。新课标要求学生具有一定创新精神和实践能力,注重培养学生的个性,那么,接下来就为同学们提供一个展示的平台,让学生自主发挥,体会资源共享的好处和劳动成果被认可和赞赏的喜悦。)

由每组选派一到两位代表进行成果展示,老师和同学们参与讨论和交流,引导学生体会数学史知识对数学学习的重要作用,倡导积极主动地学习方式,让学生深入体会整个活动过程中的成就感,从而对数学产生更多的兴趣和热爱。

(三)活动尾声,分享感受

邀请一些学生谈谈他们在这个活动中的经历。谈谈自己小组组员在整个准备的过程中是如何进行分工的,大家的积极性如何,过程中是否遇到什么困难,又是如何将困难克服的,在整个活动的过程中最大的收获是什么。进而让学生再一次体会团队协作的力量,体会积极参与的乐趣,体会数学史的美妙,并鼓励他们在今后的数学学习中保持这种对数学史的关注度,养成爱阅读爱探索的学习习惯,做数学学习的“有心人”!

数学史课件(9)

《数学史》这本书从希腊数学讲到了现代数学。我所感兴趣的部分有几个,一是关于以前的技术系统。我不知搭配人们是从何时开始计数的,但是当时的以十的幂为基数的计数系统以及六十进制的分数表示虽然不及现在的阿拉伯数字方便,但仍值得我们称赞。第二是希腊数学。虽然希腊人并不太在意应用数学,但是我觉得他们所研究的几何也是需要来源于生活的,是要从生活中去寻找,发现和提取的。也就是那个时候,欧几里得编出了影响深远的《几何原本》。我们现在所学的几何就与《几何原本》有着很大的关系,所以说这么看来的话,到现在我们也不过只是学到了数学的皮毛而已,许多的知识还是希腊数学。且其中的平行公设到了十九世纪仍然被研究。所以用影响深远来描述《几何原本》,应该不为过吧。同时,他们也对Π有了一些认识。由此可见,他们不仅从生活中提炼出了数学思想,而且还在上面添加了许多华丽的色彩,使得整个数学系统更加庞大,也让数学渐渐成为我们不敢仰望的存在。最后一个令我感兴趣的部分是代数。步入初中学习后,我们开始接触代数,但读了《数学史》我才知道代数竟然是十六、十七世纪所产生的,过了几个世纪,代数又成为了让人头疼的部分。并且在那个时候,他们就已经开始研究一些复杂的代数问题了。

《数学史》向我们完整地展示了数学各个枝节细致的发展过程,这种过程被描写的也还算有趣(至少让我看得下去),虽然专业术语很多,阅读有障碍,但我不得不说,这确实是好读的数学史。

数学史课件(10)

浅析数学史的教育价值与具体应用

随着数学、 科学技术和社会的发展, 人们对数学有了越来越深刻的认识, 对数学和数学教育、 数学史与数学教育的关系有了越来越深刻的认识, 对数学教育取向的数学史研究及其教育价值的发挥也越来越重视。 本文就数学教育取向的数学史的学科性质, 它与数学教育的密切联系,怎样通过数学史学习加强数学教育、 发挥数学史的教育价值, 以及融数学史与数学教学中存在的困难和问题做初步探讨。

1 数学史的学科性质

数学史是研究数学发展历史的学科, 是数学的一个分支, 也是科学史下属的一个重要分支。数学史与数学研究的各个分支、 社会史、 文化史的各个方面都有着密切的联系。数学史研究数学原理、 概念、 思想和方法等的起源与发展, 及其与社会、 政治、 经济和一般文化、 教育的联系, 它不仅追溯数学原理、 概念、 思想和方法的演变、发展过程, 而且还探索影响这种过程的各种因素, 以及历史上数学科学的发展对人类文明所带来的影响。 数学史的研究对象不仅包括具体的数学内容及其发展的历史分期, 而且涉及历史学、哲学、 文化学、 教育学、 宗教学等社会科学与人文科学内容。 因此, 数学史是一门综合性、 交叉性学科。

本文所指的数学史, 不是那种为历史而研究历史的纯数学史, 而是为教育而研究历史的数学史, 也就是数学教育取向的数学史, 其关注点侧重于以对数学发展作出贡献的着名历史人物的可歌可泣的、 丰满鲜活的数学创造事迹为载体, 追溯数学原理、 概念、 思想和方法的演变、 发展过程, 探索影响这种过程的各种因素, 以及历史上数学发展对人类文明所带来的影响。

2 数学史的教育价值

数学是历史最悠久的人类知识领域之一。 从远古屈指计数到现代高速电子计算机的发明, 从量地测天到抽象严密的公理化体系, 在五千余年的数学历史长河中, 重大数学思想的诞生与发展确实构成了科学史上最富有理性魅力的题材。 与自然科学相比, 数学更是积累性科学, 其概念和方法更具有延续性。 数学已经广泛地影响着人类的生活和思想, 是形成现代文化的主要方面。 因而, 数学史是从一个侧面反映的人类文化史, 又是人类文明史的最重要的组成部分。 许多历史学家也通过数学这面镜子, 了解古代其他主要文化的特征与价值取向。

数学科学作为一种文化, 不仅是整个人类文化的重要组成部分, 而且始终是推进人类文明的重要力量。 对于每一个希望了解整个人类文明史的人来说, 数学史是必读的篇章。 可以说不了解数学史就不可能全面了解整个数学科学。 数学史在整个人类文明史上的这种特殊地位, 是由数学作为一种文化的特点决定的。 数学史无论对于深刻认识作为科学的数学本身, 还是全面了解整个人类文明的发展都具有重要意义。

数学史在数学教育中的重要作用早在 19 世纪就已经被一些西方数学家所认识。 法国着名数学家亨利·庞加莱 (J. H. Poincare,1854~1912)指出: “如果我们想要预见数学的未来, 适当的途径是研究这门科学的历史和现状。”[1]数学史家卡约里(Cajori,1859~1930)说: “数学史的重要性表现在数学为人类文明所作出的贡献。

人类进步与科学思想的发展密切相关, 数学与物理的研究乃是智力进步的可靠记录。”[1]

19 世纪末以后, 欧美众多着名数学家、 数学史家和数学教育家都提倡在数学教学中直接或间接地利用数学史, 数学史的教育价值受到数学家们的大力提倡。[2]

在 1904 年德国海德堡召开的第三届国际数学家大会上, 美国着名数学史家、 数学教育家史密斯(D. E. Smite,1860~1944)与其他国家的几个数学家、 数学史家和数学教育家在提出的一项决议中指出: “数学史在今天已成为一门具有无可否认的重要性的学科, 无论从数学的角度还是从教学的角度来看, 其作用变得更为明显, 因此, 在公众教育中给与其恰当的位置乃是不可或缺的事。” 该项决议希望在大学里开设精密科学史课,包括数学与天文学史、 物理与化学史、 自然科学史、 医学史四部分。 该项决议还建议在中学课程中介绍精密科学的历史。[3]

到了 20 世纪 70 年代, 数学史对数学教育的重要意义已成为西方数学教育家们的共识, 数学史与数学教育之间关系的理论研究也引起广泛关注并提到了国际数学教育的议程中。 1972 年, 在第二届国际数学教育大会上, 成立了数学史与数学教学关系国际研究小组 (简称HPM,1976 年开始隶属于国际数学教育委员会), 这标志着数学史与数学教育关系作为一个学术研究领域的出现。[3]

在我国, 数学史的教育价值也早已被一些学者所认识。 近年来, 论述数学史教育价值的文章不断增多, 在数学教学中融入数学史的呼声越来越强烈, 特别是《普通高中数学课程标准(实验)》的颁行把数学史融入数学教学的行动从幕后推到了前台。 2005 年 5 月在西安召开了我国第一届数学史与数学教育会议, 这表明, 数学史与数学教育这一领域已经得到我国数学史与数学教育界的普遍关注。

总之, 数学教育取向的数学史的教育价值早已被人们所认识, 关于数学史与数学教育的关系的研究正在不断深入, 融数学史于数学教学已经从理念逐步变为行动, 也成为通过数学教育对学生进行德、 智、 美育的切入点。 通过数学教育取向的数学史的学习, 进一步认识数学史与数学教育的内在密切联系, 在数学教育教学过程中发挥数学史的教育价值, 优化学习者的知识结构, 提高人才培养质量。

概括而言, 数学教育取向的数学史的教育价值主要在于以下几个方面:

2.1 给数学教学积累丰富的教育性资料

数学具有严谨的逻辑性、 高度的抽象性、 应用的广泛性、 深刻的文化性、 知识的延续性、 独特的优美性等特点。 作为数学教师, 只有通过数学史积累丰富的教育性资料, 才能获取相关知识点(如,数学概念、公式、定理和方法等)的教学启示, 为丰富和活跃数学教育教学活动打好基础。

数学史对于数学教师而言不仅是教学中必需的知识, 而且也是形成数学思想和方法以及培养专业精神和科学探索精神的源泉。

荷兰着名数学史家迪克斯特休 (E. Jan Dijk-sterhuis,1892~1965) 强调数学史在师范教育中的重要作用时指出: “中学数学教师的主要任务是向下一代传授数学知识, 并且, 如果可能的话, 激起他们对于人类千百年以来在该领域中所取得成就的热爱与崇敬。 对于这些师范生来说, 关于这门学科历史演进的知识乃是一种财富, 这种财富不仅是宝贵的, 而且是不可或缺的, 它---自然还需要掌握现代数学知识---将使他们能够令人满意地完成自己的职责。 他们经常需要去关心过去数学发展的各个阶段, 他们必须把这些阶段讲得清晰一些, 对孩子有吸引力一些。 孩子们必须通过这种方式得到思维的训练。”[3]

2.2 为数学课程和教学设计提供丰富的史料

近几年来, 在国内外数学教育改革中, 强调数学的文化价值, 使数学史知识得到广泛的关注。

数学史已成为数学课程和数学教学设计的丰富史料, 已成为数学教学内容的有机组成部分。

《义务教育数学课程标准 (2011 年版)》 指出“数学文化作为教材的组成部分 , 应该渗透在整套教材中。 为此, 教材可以适时地介绍有关背景知识, 包括数学在自然与社会中的应用, 以及数学发展史的有关资料, 帮助学生了解在人类文明发展中数学的作用, 激发学习数学的兴趣, 感受数学家治学的严谨, 欣赏数学的优美。” 《普通高中数学课程标准(实验)》把 “数学史选讲” 作为选修课加以开设, 并在理念部分指出: “数学是人类文化的重要组成部分。 数学课程应适当反映数学的历史、 应用和发展趋势, 数学对推动社会发展的作用, 数学的社会需求, 社会发展对数学发展的推动作用, 数学科学的思想体系, 数学的美学价值, 数学家的创新精神。 数学课程应帮助学生了解数学在人类文明发展中的作用, 逐步形成正确的数学观。” 在选修课系列 3-1 “数学史选讲” 中列出了可供选择的 11 个专题, 并提出了具体要求: “通过生动、 丰富的事例, 了解数学发展过程中若干重要事件、 重要人物与重要成果, 初步了解数学产生与发展的过程, 体会数学对人类文明发展的作用, 提高学习数学的兴趣,加深对数学的理解, 感受数学家的严谨态度和锲而不舍的探索精神。”“完成一个学习总结报告。 对数学发展的历史轨迹、 自己感兴趣的历史事件与人物, 写出自己的研究报告。”“本专题由若干个选题组成, 内容应反映数学发展的不同时代的特点, 要讲史实, 更重要的是通过史实介绍数学的思想方法, 选题的个数以不少于 6 个为宜。” 这将会大力推动数学史和数学教学的融合, 进一步发挥数学史的教育价值。[4][5]

2.3 深化对数学原理、 概念、 思想和方法的理解

数学有产生发展的特定历史过程。 只有懂得数学发展史, 才能深刻理解数学。 在数学教学中融入数学史内容, 让数学教学鲜活起来, 有助于学生对数学概念、 方法和原理的理解与认识的深化, 帮助学生理解数学及其价值, 形成正确的数学观。 数学家研究数学的时候带着激情在思考,一旦研究有了确切结果, 呈现在我们面前的则是冰冷的美丽学术形式。 因此, 我们要通过数学史的学习, 了解当时的数学家为什么和如何研究数学。 一个数学原理、 一个具体的数学概念, 一个有效的数学思想方法究竟是怎样产生的? 一个数学符号是怎样演变形成的? 为什么古希腊人要用公理化方法展开数学, 从而形成演绎几何体系?

他们所处的时代背景如何? 中国古代数学的特点和古希腊数学的特征有何不同? 等等。 弄清这些问题, 对学生理解数学很有好处。 在这方面, 值得研读的数学名着之一是美国着名数学史家 M·克莱因(Kline Morris,1908~1992)1972 年出版的着作《古今数学思想》(1979 年有中译本)等。

丹麦数学家、 数学史家邹腾 (H. G. Zeuthen,1839~1920) 早在 1876 年的一篇数学史论文中就强调数学专业的学生学习数学史的必要性, 他指出: “学生不仅获得了一种历史感, 而且, 通过从新的角度看数学学科, 他们将对数学产生更加敏锐的理解力和鉴赏力。”[3]对于一个数学教师而言, 如果没有数学史方面的知识积累和修养, 很难把数学课上好。

2.4 激发学习兴趣和爱国热情

融数学史于数学教学, 使学生了解数学与人类文明发展的密切关系, 可以激发学生的学习兴趣, 活跃课堂气氛, 提高教学效果。 数学史可以使学生了解数学的发展, 了解中国古代数学的辉煌成就, 了解中国近代数学落后的原因和中国现代数学研究发展的现状, 充分介绍中国现代数学家的贡献, 以激发学生的爱国热情, 培养胸怀宽广的奉献精神, 振兴民族科学。华罗庚 (1910~1985)、 陈景润 (1933 ~1996)、 陈省身 (1911~2004)等着名数学家的光辉事迹, 中学物理教师陆家羲(1935~1983) 在数学研究上取得的成就和献身精神等等, 不仅是进行数学专业教育的典型材料,而且是进行思想教育、 启发人格成长的良好材料。实现数学教育的德育功能, 数学教育取向的数学史学习是不可缺少的内容。数学是全人类的共同财富。 在科学发现上,各个国家和各个民族应该彼此借鉴, 互相学习,共同提高。 要把外国的一切优秀文化, 包括数学成就都充分尊重, 吸收过来。 “洋为中用”, 为祖国建设服务, 实际上就是爱国主义教育。

人类的数学文明最早起源于巴比仑, 其次是埃及。 巴比仑的泥板、 埃及的纸草书上的数学记载都在公元前 1000 年以上。 即便是后来的古希腊的数学文明也远早于中国。 中国古代数学虽然出现得比地中海文明要迟许多, 但是具有自己的特点, 同样为人类作出了重要贡献。 我国着名数学家吴文俊院士曾经十分深刻地指出, 中国古代数学的优秀传统是“算法数学”。中国算学虽然缺乏古希腊式的公理化演绎体系, 却十分准确地用算法的形式表达出来。20 世纪 70 年代, 吴文俊从研究中国古算受到启发, 并结合现代计算机技术进行思考, 发展出了世界领先的“数学定理机器证明”方法(世称“吴方法”)。 这样的古为今用, 才是真正的爱国主义, 才能真正激发起民族自豪感。

2.5 强化应用和创新意识

提高学生对数学的宏观认识, 数学教师的任务不仅要把书本上的内容讲清楚, 还要对数学发展的来龙去脉有清楚的介绍。 一个优秀的教师,不仅要授人以业, 还要授人以法, 进而授人以道。

教师要掌握这些“法”和“道”, 必须宏观地理清数学发展的脉络, 深入理解数学的本质。 对于进行数学创新来说, 数学史研究更具有指引作用。 数学史中记载了许多数学家发明发现的生动过程,向学生介绍这些过程, 有助于学生理解掌握创造的方法、 技巧, 从而增强其创造力。 如公元 263年, 刘徽对我国数学古籍《九章算术》的注释中提出了计算圆周长的 “割圆” 思想。 “割之弥细, 所失弥少, 割之又割, 以至于不可割, 则与圆周合体, 而无所失矣”, 这些对极限思想的朴素生动的描写, 对后人是一种创新激励。 大量的数学史料, 对于培养学生坚韧不拔的探索精神, 形成良好的认知结构和知识结构都具有重大意义。

2.6 提高人文修养

许多数学家都是文理兼修的饱学之士, 他们都具有辩证的认知结构和文理贯通的知识结构。因而, 历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。 在高等学校里, 通过数学史学习, 可以使数学系的学生在接受数学专业训练的同时, 获得人文科学方面的修养, 文科或其它专业的学生通过数学史的学习可以了解数学概貌, 获得数理方面的修养。 通过数学史学习可以对学生进行人文教育, 进行美育熏陶。 在中小学数学教育中恰当地融入数学教育取向的数学史, 对学生进行人文教育和美育熏陶,是数学课程改革中值得重视的一个重要课题。

3 在数学教学中融入数学史应注意的问题

如何在基础教育数学教学中渗透数学教育取向的数学史, 是一个国际数学教育界共同关心的问题。 1998 年, 国际数学教育委员会在法国马赛组织了一次 “数学史与数学教育” 的专题研讨会。

这次会议的主题是数学文化, 要求数学教学充分反映数学的文化底蕴, 从课程内容, 概念形成,证明方法, 习题配置等各个方面, 全方位地使数学史融入、 丰富和促进数学教学。

数学文化观念下的数学史教学, 要把握各民族文化发展的历史进程, 看到世界各国的科学技术是如何各自发展, 又如何彼此融合, 互相促进。

数学是人类追求真理的文化结晶。 我们要从数学史中汲取对我们今天有用的文化内涵。

3.1 融数学史于数学教学应重视科学性 、 实用性、 趣味性和广泛性

(1) 科学性是指教师向学生传授的数学史知识必须是正确的。 应该尊重历史, 尊重事实, 既不可随意编造, 也不能无端拔高, 更不可进行艺术加工, 不可把数学史当作故事, 随意虚构。

(2) 实用性是指所讲的数学史对学生的数学学习及将来工作有直接帮助作用。 例如, 初等数学中的数的起源与记法、 发现无理数的过程、 圆周率、 勾股定理、 笛卡尔对直角坐标系的贡献等等; 高等数学中的微积分的概念、 函数的概念、非欧几何的创立, 不仅史料丰富, 而且内容精彩, 非常适合于课堂教学, 对学生理解所学的知识有很大的帮助。 但受课时的限制, 所选内容要精当, 要有所侧重。

(3) 趣味性是指课堂教学要有趣味, 学习内容可以激发学生的学习兴趣。 数学史上惊心动魄、引人人胜的例子不胜枚举, 教师应恰当选材, 使课堂教学娓娓动听。 讲授时要合理地运用语言,全身心地投入表达, 语调与情节配合, 知识性与趣味性共生, 应避免照本宣科或哗众取宠, 要寓教于乐, 注重实际效果。

(4) 广泛性是指选取的数学史知识要涉及面广。 数学是几千年来全人类孜孜以求、 不断探索、历尽千辛万苦共同取得的理性财富。 在整个数学科学发展长河中, 数学是在人类社会变革推动之下, 各国数学家相互交流学习, 共同探索的结果。因此, 在进行数学教育取向的数学史教学时注意选择不同时期、 不同国度的史料。 这样才能全面地、 真正地、 准确地展示数学史的全貌。

3.2 融数学史于数学教育关键在教师

(1) 教师应有广博的数学史知识以及政治 、经济、 哲学、 文化、 历史、 地理等多方面的知识, 教师应加强数学史知识的学习和多学科知识的充实, 丰富自己的阅历。 这样讲课才能得心应手, 将课讲活讲透。 不能将数学史知识生搬硬套地应用到数学教育中。

(2) 数学史知识是穿插在授课内容中的, 不能喧宾夺主, 应以完成授课计划为主。 在授课过程中自然引出, 不应过分渲染, 忽视了正常的教学内容。 正确把握好数学史和课堂教学内容的主次。

(3) 除课堂教学外, 应为学生提供适当的参考文献, 引导学生阅读课外读物, 例如, 各种专题论述、 人物介绍、 学科进展等, 使学生开阔眼界, 启发和引导学生进行正确阅读, 继而进行自学, 使学生终身受益。

(4) 数学史中教书育人的作用是其他数学课无法取代的。 这要求教师应有积极主动的态度,为人师表, 在理想、 道德、 情操方面为学生树立榜样, 提高学生的数学素质和思想素质, 要把爱国主义和国际意识统一起来。

3.3 努力改变 “高评价, 低应用” 的现象

如何将数学史融入数学教学, 是近几年来国际 上 数 学 史 与 数 学 教 学 关 系 国 际 研 究 小 组(HPM) 关注的中心话题, 一些国际知名的 HPM研究者相继对数学史融入数学教学的层次、 过程、 形式和途径进行了深入探讨。 但是, 由于数学教育的复杂性及其现实条件, 真正具有普遍推广价值的研究结果比较少。 在我国, 尽管有很多学者大声呼吁“应该讲点数学史”, 而探讨如何去做的实质性试验研究明显偏少。 于是, 世界各地在融数学史于数学教学方面不同程度地都存在“高评价,低应用”的相悖现象。 这个问题在我国进行基础教育数学新课程改革的今天显得更加突出。

究其原因, 从数学教师的角度来看, 主要有 “四无”, 即手头无资料, 胸中无知识, 课程中无设计, 课堂上无时间; 从考试的“指挥棒”作用上来看, 主要有 “三不”, 即考试不要求, 平时不检查, 学生不愿意花时间; 从教学资源方面来看,主要有 “二少”, 即研究投入少, 教学案例少。 因而导致教学资源(包括显性的和隐性的)不足, 进而影响学生综合素质的提高。因此, 我们要增强教学资源开发意识, 加强试验研究, 努力改变 “高评价, 低应用” 的相悖现象。 国家数学课程标准的颁行, 考试制度的改革, 将会对融数学史于数学教学、 发挥数学史的教育价值有一个实质性的推进。

参考文献:

[1] 杜瑞芝 。 数学史辞典 [M]。 济南 : 山东教育出版社 ,2000, 8.

[2] 汪晓勤 , 欧阳跃。 HPM 的历史渊源 [J]。 数学教育学报, 2003, 12(3): 24-27.

[3] 张维忠 , 汪晓勤 , 唐恒钧 , 等。 文化传统与数学教育现代化 [M]。 北京: 北京大学出版社, 2006, 4.

[4] 教育部。 义务教育数学课程标准(2011 年版 ) [M]。 北京: 北京师范大学出版社, 2012, 1.

[5] 教育部。 普通高中数学课程标准 (实验 )[M]。 北京 : 人民教育出版社, 2003, 4.

[6] 李文林 。 数学史教程 [M]。 高等教育出版社 , 纽约 :施普林格出版社, 2000, 8.

[7] 李永新, 等。 中学数学教育学概论 [M]。 北京: 科学出版社, 2012, 6.

[8] 张楚廷。 数学文化 [M]。 北京:高等教育出版社, 2000, 7.

数学史课件(11)

浅谈初中数学教学中学生创新能力培养

前言

在新时代的背景下,各种高新科学技术和社会经济文化水平迅猛发展。在人们的物质需求和文化需求逐渐增加的同时,社会对于人的知识储备和整体素质能力也有了更高的要求。社会要求人应该具备高知识水平和良好的创新能力。而知识和个人综合能力包括创新能力的提高,在很大程度上都要依赖于教育。作为九年制义务教育的最后阶段,初中教育在其中起着很大的作用。如何提高培养初中数学教学中学生的创新能力,这是值得研究的问题。

一、初中数学教学现状和创新能力作用

随着时代的发展,信息时代的来临,机器化和工业化固然重要,然而如何更好地运用好机器、工业甚至资源和资本,都有赖于人的创新能力。人在社会发展中占据主导地位,因为人的知识储备、具备的综合能力和创新能力可以更好的适应当代社会的发展,从而更好的推动社会的发展。单就发明专利数量而言,中国虽然科研人员的人数众多,然而专利数却远远落后于其他国家,且质量水平较低。新华社2003年的一项调查报告显示,我国青少年参与科学探究的比率低于百分之三十,对科学创新也不知道如何实施,这样的情况是很严峻的,这显示了我们国家在对青少年的基础教育培养中没有重视对于学生的创新能力培养。因此,提高青少年的创新能力对我国国情而言,刻不容缓。

信息化飞速发展的社会需要大量的创新型人才,而我国传统教育却往往重视对学生理论知识的灌输而不够重视实践,重视教师的教程教案而不够重视学生的自主学习,而系统的学习和学生的学习创新能力却极度缺乏。“应试教育”很大程度上阻碍了学生的自我发展和创新能力培养。而初中教学在对于青少年整个的接受教育生涯中起着基础性的作用

而研究表明,在十几岁的年纪,青少年的创新能力是逐渐提高的,而在接受教育的条件下,对于提高其创新能力的帮助也是显著的。创造力是可以培养的,并且初中生在创新创造这方面比起成年人有着更大的主动性和兴趣,因此,通过初中课堂教学尤其是数学教学,有利于培养起学生对于科学学习的兴趣以及培养学生的创新能力。学生在教师的指导之下进行有益的自我探索式学习,积累科学知识,不把课本和教师当成绝对的权威,而是主动思考科学知识的由来,对知识有一个深入的探究,寻找新思路、新方法。创新能力的本质是在教学活动中学生的创新思维品质,脱离基础教学,空谈创新能力毫无意义。

数学本身具有抽象性和严密的逻辑性,学习数学有利于学生对于现实世界的把握和探索,在学习的过程中形成自己的思维逻辑,拥有自己思考形成的一套方法和准则。在教师教学的过程中,从实际出发,脱离那些被固化的解题模板,从本源出发,发散思维,通过思考、实践、交流探索来进行有效的学习探索,因此对于培养学生的思维能力和创新能力是至关重要的。

创新能力的本质是在教学活动中学生的创新思维品质,脱离基础教学,空谈创新能力毫无意义。初中数学的基础教学是创新能力培养的重要途径,培养学生的创新能力也是初中数学教学的基础任务。

二、提高学生创新能力的方法对策

目前在初中数学教学过程中,确实存在许多问题,阻碍了学生的创新能力的培养和发展。比如说“应试教育”的功利性较强,一方面会导致教师在教授知识的过程中会加强理论知识的灌输和解题技巧的培养,另一方面学生也会更注重对于试卷上题目的解答能力和卷面分数高低,而忽略了数学思维的培养

另外,教学内容的简单化和教学方式的单一化也使得对于探索式学习的进行遇到阻碍。课堂教育中灌入式的教学方式和大量习题的运作量,以及对于作业和考试的重视远远大于对知识本身的渴求,学生不是学习的主体,反而是被动接受。这样的现状需要改变,除了要提高教师的专业素质,还要:

1.加强对教师专业素质的培养提高,需要教师树立好正确的教育理念,正确意识到自身社会责任和保持良好的道德。除了单纯的技巧教学,不照本宣科而是以创新的意识、创新的方式,多角度发散思维教学,培养学生的创新能力。

2.教材对于课堂教学起的是基础性作用。要运用合理科学的教材,符合时代和社会的发展。另外是教师和学生对于教材的运用,也要有科学的方式,将实践和课本理论有效结合,引导学生主动学习,提高创新能力。

3.创新意识不仅仅只是“意识”,不是天马行空的想象,而是合乎情理的新发现,合乎逻辑的思维发散。教师和学生都要树立起对创新能力的正确认识。教师要做的是引导,学生要做的是思考,敢于质疑权威、批判传统,培养起科学的意识,主动去发现问题,分析、解决问题。

4.实现教学的创新模式,发展新型平等的师生关系,营造课堂和课下的创新氛围,教师树立新的教学观、学生树立新的学习观念,发展创新素质,实现教学组织的创新、教学内容的创新、教学方式的创新,从实际出发,结合科学合理的创新模式,使学生真正学会学习学会思考,提高创新能力。

数学史课件(12)

数学是历史的长河中一颗闪亮的明珠,闪闪发光。生活中离不开数学,处处都能看到数学的影子。这个寒假老师叫我们读了一本叫做《这才是好读的数学史》的书。更加深入的了解了不同国家的不同数学发展历史。让我从中对数学有了不同的理解。

我们在学校也一直在学习数学,却从来没有学过数学的发展历程,通过阅读这本书我也明白了,从古至今的数学发展是很漫长的但却十分有意义。就像现在我们所学的数学,其实背后都有着数学家们探索的故事。从中我们也能感受到数学家不断追求真理的那种执着。这本书不仅讲了中国的数学发展,也还讲了许多国家的数学发展。我们也看到了数学的辽阔,现在我们学的只是皮毛。

数学发展的历史长河中总有一些光辉一直不掉的数学家们,他们推进了数学的发展,真正的印刻在了历史的长河里。但是在探索数学的道路上,在他们的背后还有许多一直默默探索的人,而能够支持他们一直走下去的理由,我想只能是热爱吧。因为热爱,所以想探索更多。

对于数学的探索。并不是只属于某一个国家,而是属于全人类的。就像古希腊数学的中心是几何,他们也探索出了许多关于几何的真理。但这些真理最后也被全世界所使用,所以在探究数学这条路上全人类都是一致的。虽然在公元五世纪标志着古希腊数学的终结,但是,古希腊的数学也给了人们许多真理。

通过阅读这本书,我不仅了解到了数学的发展历史,也明白了数学的发展是无止境的,具有创新,是开启科学大门的钥匙,是人类智慧的结晶。

数学史课件(13)

此书是《数学史教程》的第二版,这本书还得到了许多数学界有望人士的高度赞扬。嘉兴学院声誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解前史的改变是了解这门科学的一个过程。此外,吴文俊院士也在百忙中赶写了,对《数学史概论》一书在数学史学科研讨上的必定,并称之“翻阅此书都会开卷有益并感到趣味”。

数学是一门前史性或许说堆集性很强的学科,严重的数学理论总是在承继和开展原有理论的基础上建立起来的,它们不只不会推翻原有理论,并且总是容纳原先的理论。所以说数学是前史最悠长的人类常识范畴之一。因此也有数学史家以为“在大多数学科里,一代人的修建为下一代所炸毁,一个人的发明被另一个人所损坏,可是有些学科就像数学,每一代人都在陈旧的大厦上增加一层楼”。

作者是按如下的数学史分期为头绪进行打开论说的:

一、数学的来源和开展。

二、初等数学时期。

1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。

三、近代数学时期。

四、现代数学时期。

此书从上古的巴比伦、希腊、我国、印度、阿拉伯,以致今世数学,关于数学的奉献与影响都有中肯的谈论和阐明。在原始社会,从原始的“数觉”到笼统的“数”概念的构成;跟着计数的逐渐开展,呈现了石子记数和结绳记事等记数办法;接着阅历算术与几许法的发现;再在此基础上加工升华为具有开始逻辑结构的证明数学系统;随之开展而来的便是近代数学;之后数学的开展更是迅猛:微积分的创建,代数学的重生,几许学的革新......

在许多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不只对数学史实有翔实而忠诚的介绍,还凭借各种例子来让读者了解,乃至加入了许多生动有趣的故事及奇闻轶事,例如阿基米德处理皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了许多闻名的数学家,并就其学术成果做了归纳的介绍,特别重要成果,不吝花了许多篇幅以具体阐明。

最终,作者还就数学与社会的联络及两者相互之间的影响宣布了论说。他精辟地论述为:数学的开展与社会的前进有着亲近的联络,这种联络是双向的,即一方面,数学的开展依赖于社会环境,受着社会经济、政治和文明等许多要素的影响;另一方面,数学的开展又反过来对人类社会物质文明和精力文明两大方面的影响。接着,作者从数学与社会前进,数学开展中心的搬迁,数学的社会化三方面进行了打开阐明。

我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于细心的拜读,但我想经过这次翻阅仍是收获颇丰的。

数学史课件(14)

第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但是歌德的不完全性理论彻底破坏了希尔伯特建立和完善数学形式体系和解决数学基础的野心。

天才的思想往往超前于时代。这些普通人真的很难理解他们。但是时间会证明一切!

数学是一门历史性或积累性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。

可以说,在数学漫长的进化过程中,几乎没有完全推翻以前的建筑。

中国传统数学源远流长,有自己独特的思想体系和发展道路。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从古代到宋元时期,中国一直是世界数学发展的主流。

明朝以后,由于政治社会等多种原因,中国传统数学濒临消亡,后来全部被西方欧几里得传统所取代甚至垄断。中国数学几千年的发展,给我们留下了大量宝贵的史料。

人们为什么长久以来称数学为“科学的女皇”呢?也许是女王无法亲近的神秘感觉和人们向往和陶醉的面孔。这不禁让人想起了数学!

数学史课件(15)

函数的发展,对当代社会的生产生活产生了重大的影响;函数概念也随着时代的不断进步而分成了网状的分支,从简单的一次函数到后来复杂的五次函数方程的求解;从简单的反函数,三角函数到后来的复变函数,实变函数。这些函数的常用性质,以及函数的求解都随着人们对函数概念理论的不断深入而发现,进而无数人对其更加深入了研究探讨,函数思想理论也深入渗透到社会各个领域。从教师教学中的函数思想到解决实际问题的数学建模;从计算机编程领域的 C 函数到调控市场经济的概率理论研究,函数无时无刻不在发挥其强大的作用。了解函数概念发展的过程,就是不断挖掘理解函数内涵的过程,可以使人们对这个客观的世界更加深入的了解,有助于人们丰富视野,并不断的加以发展,适应不断变化的社会需要。

数学史课件(16)

在这个寒假里,我接触到了《数学史》这本书。这本书介绍了数学从有记载的源头向最初的算术、几何、统计学、运筹学等领域不断深化发展的历史进程,以及如今数学的发展。

这本书分为两篇,上篇是数学简史,下篇是数学概念小史。这本书中令我印象最深的数学家就是费马。皮埃尔·德·费马是属于文艺复兴时期传统的人,他处于重新发掘古希腊知识的中心,但是他却问了一个希腊人没有想到过要问的问题—费马大定理。这个问题困惑了世人358年,直到1994年的9月19日安德鲁·怀尔斯才宣布解开这个问题。这个问题起源于古希腊时代,它联系着毕达哥拉斯所建立的数学的基础和现代数学中各种最复杂的思想。费马大定理的故事和数学的历史有着密不可分的联系,它对于“是什么推动着数学发展”,或者是“是什么激励着数学家们”提供了一个独特的见解。费马大定理是一个充满勇气、欺诈、狡猾和悲惨的英雄传奇的核心,牵涉到数学王国中所有最伟大的英雄。巴里·梅休尔评论说,在某种意义上每个人都在研究费马问题,但只是零星地而没有把它作为目标,因为这个证明需要把现代数学的整个力量聚集起来才能完全解答。安德鲁所做的就是再一次把似乎是相隔很远的一些数学领域结合在一起。因而,他的工作似乎证明了自费马问题提出以来数学所经历的多元化过程是合理的。

读了数学史后,我认为数学在我们的生活中扮演着不可或缺的角色,只有学好数学,学会应用数学,我们才能在这个正在向数字化发展的社会稳稳地站住脚跟。

    想了解更多【数学史课件】网的资讯,请访问:数学史课件

文章来源:https://www.jt56w.com/xueshengjiantaoshu/156234.html