导航栏

×
你的位置: 检讨书大全 > 学生检讨书 > 导航

椭圆的标准方程课件(集合十二篇)

发表时间:2023-07-03

椭圆的标准方程课件(集合十二篇)。

[1] 椭圆的标准方程课件

【一】教学背景分析

1.教材分析

圆的标准方程是高中数学第二册(上)第七章第六节《圆的方程》中的第一种形式,是在前面学习了直线方程和求曲线方程一般方法之后的又一曲线方程,它是对前面知识的延续和拓展,同时也是研究二次曲线的开始,对我们学习后面一般方程和参数方程及第八章《圆锥曲线》等内容,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

2.学情分析

虽然学生初中已学习了圆的概念和基本性质,又掌握了求曲线方程的一般方法,但学生学习解析几何的时间还不长,对解析几何的本质还不是很了解,对坐标法的运用也还不够熟练,所以在学习过程中难免会出现困难.

  【二】教学目标,教学重点和难点1.教学目标:

(1)知识目标:①掌握圆的标准方程,会由圆的标准方程写出圆的半径和

圆心坐标;

②能根据条件利用待定系数法求出圆的标准方程;

③利用圆的标准方程解决简单的实际问题.

(2)能力目标①加强对待定系数法的运用,进一步培养学生用代数方法研究几何问题的能力;

②增强学生应用数学解决实际问题的意识和兴趣.

(3)情感目标:培养学生主动探究的意识2.教学重点与难点

(1)重点:圆的标准方程的形式及利用待定系数法求圆的标准方程. (2)难点:①根据不同的已知条件利用待定系数法求圆的标准方程;

②利用圆的标准方程解决简单的实际问题.

【三】教法分析

为了充分调动学生学习的积极性,我采用“启发式”问题教学法,用环环相扣的问题将教学过程由浅入深的层层推进,通过对问题的解决达到对知识的理解,既能适应学生的思维过程,又激发了学生学习数学的兴趣,因为他能够在学习的过程中学有所获、思有所得。

【四】教学过程分析

我将整个教学过程设计为五个环节,由七个问题组成。创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申(一)创设情境——启迪思维

问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

设计这个问题的目的:

1、由实际问题创设情境,贴近生活,让学生感受到问题来源于实际,应

用于实际,激发了学生的学习兴趣。

2、转化学生的思维:从用几何方法转移到利用曲线的方程来解决.这样

即帮助学生回顾了旧知——求轨迹方程的一般方法,同时让学生自己利用定义推导出圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题:圆的标准方程。

(二)深入探究——获得新知问题二1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

2.如果圆心在任一点c(a,b),半径为时又如何呢?

对问题一主要是让学生总结归纳出圆心在原点,半径为r的圆的方程.问题二的目的是进一步激发学生的求知欲,引导学生推出圆心为(a,b)半径为r的圆的方程,指出此方程即为圆的标准方程。

(三)用举例——巩固提高

在此环节中我由浅入深的设计了三个平台:I.直接应用内化新知

问题三1.写出下列各圆的标准方程:

(1)圆心在原点,半径为3;

(2)圆心在点2.写出圆

.半径为5;

的圆心坐标和半径.

我设计了两类小问题,第一类是直接的给出圆心坐标和半径求圆的标准方程,第二类是给出圆的标准方程求圆心坐标和半径,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面用代定系数法求圆的方程作准备.

II.灵活应用提升能力问题四1.求以点

为圆心,且和直线

相切的圆的方程.

2.求圆心在X轴上且过点(-1,1)和(1,3)的圆的方程3.求过点

,圆心在直线

上且与轴相切的圆的方程.

第一个小题为课本上的例1,已知圆心只要利用切线的性质求出半径即可,是上一个问题的'延伸,即直接法写出圆的标准方程。第二、三小题圆心、半径不明确要引导学生先设后求即待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.形成求圆的方程的一般方法(重点强调)。

III.实际应用回归自然

问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高oP=4m,在建造时每隔4m需用一个支柱支撑,求支柱

的长度(精确到0.01m).

此题为课本上的例3目的:

1,与引例相呼应,进一步培养学生应用数学的意识. 2它是待定系数法求出圆的三个参数学生熟悉了求圆的标准方程的一般方法。

(四)反馈训练——形成方法问题六1.求过原点和点准方程.

,且圆心在直线

上的圆的标

的又一次应用,进一步让

3

2.求圆心在直线

且与直线x?y?1?0相切于点(2,-1)

的圆的方程

这一环节中,我设计二个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,及获得成功的喜悦。

(五)小结反思——拓展引申

1.课堂小结

把圆的标准方程及求法加以小结,强调待定系数的方法及应用数学的意识

圆心为

半径为r的圆的标准方程为:

圆心在原点时,半径为r的圆的标准方程为:2.作业布置

习题7.6:第1,2,4题. 3.激发新疑

问题七1.把圆的标准方程展开后是什么形式?

2.方程

表示什么图形?

在教学过程最后我设计这两个问题,一是作为对这节课内容的巩固与延伸,二是让学生体会知识的起点与终点都蕴涵着问题要不断探索思考,同时也为下节课研究一般方程做了铺垫》

对教学过程的补充说明:

求圆的标准方程既是本节课的教学重点也是难点,是本节课学习的主要任务,为了突出此点,同时也考虑到学生的接受能力,我没有选课本例2,而准备放在直线与圆的位置关系中再解决。

[2] 椭圆的标准方程课件

标题:安全标准化培训课件:保护您的企业和员工安全


:


在现代社会中,安全问题日益受到企业和员工的关注。为了确保企业正常运作和员工的身体健康,安全标准化培训课件已成为企业管理的重要一环。本篇文章将详细介绍安全标准化培训课件的内容和目的,以及它如何帮助企业和员工保护安全。


一、安全标准化培训课件的内容


1. 法律法规:安全标准化培训课件的第一部分通常介绍相关的法律法规。这些法律法规包括国家和地方对于安全管理的要求,以及处罚措施。通过了解这些法律法规,企业和员工可以遵守规定,预防事故发生。


2. 安全意识:安全标准化培训课件还会培养员工的安全意识。课件会向员工介绍常见的安全风险,并提供防范措施和技巧。通过培养员工的安全意识,企业可以减少事故的发生概率,保护员工的安全。


3. 应急预案:安全标准化培训课件通常还会介绍应急预案的制定和执行。这些预案包括灭火、疏散、逃生等。通过学习和训练,员工可以在紧急情况下正确行动,减少损失。


二、安全标准化培训课件的目的


1. 提高安全意识:安全标准化培训课件的首要目的是提高员工的安全意识。通过了解安全风险和防范措施,员工可以对潜在的危险有所警觉,并采取适当的措施来保护自己和他人。


2. 减少事故发生:安全标准化培训课件的另一个目的是减少事故的发生。通过提供相关的知识和技能,员工可以正确地应对危险,在事故发生前采取预防措施。这样可以减少事故的发生概率,保护员工的安全。


3. 提高应急响应能力:安全标准化培训课件还旨在提高员工的应急响应能力。通过培训和模拟演练,员工可以学习到在紧急情况下正确行动的方法和技巧。这样可以确保员工在面对危险时能够冷静应对,减少损失。


三、安全标准化培训课件的重要性


1. 保护员工安全:安全标准化培训课件的最大好处是保护员工的安全。通过提供相关的知识和技能,员工可以增强对危险的警觉性,预防事故的发生,保护自己和他人的安全。


2. 保障企业正常运作:安全标准化培训课件的另一个好处是保障企业的正常运作。安全事故不仅会导致员工受伤或损失,还会对企业的声誉和业务造成严重影响。通过培训课件,员工可以正确应对安全事故,减少企业的经济损失和声誉风险。


3. 提高工作效率:安全标准化培训课件还可以提高员工的工作效率。培训课件会教授员工如何正确使用工具和设备,避免因操作错误导致的事故和故障。同时,学习安全意识和应急预案也可以提高员工的工作效率,减少因事故引起的工作中断。


:


通过安全标准化培训课件,企业可以提高员工的安全意识,减少事故的发生,保障企业的正常运作。这些课件的内容包括法律法规、安全意识和应急预案等。通过学习和培训,员工可以增强对危险的警觉性,正确应对危险,并在紧急情况下采取适当的行动。安全标准化培训课件对于保护企业和员工的安全至关重要,值得企业和员工的重视。

[3] 椭圆的标准方程课件

任何概念的学习,如有可能,我们当然希望学生在问题情境中,在解决问题的.过程中,成为催生新知的主力军。限于椭圆概念的特殊性,我对问题情境的创设,通过两个角度:从形的角度和数的`角度来加以引入,实现了由学生催生新知的初衷。

椭圆的定义教学中,画出椭圆轨迹,完全是意外的惊喜,采用根据定义“先画后展”的处理方式,突显了知识主题,符合学生认知规律,推动了课堂发展,进而通过类比圆的标准方程的推导,给出椭圆的标准方程的推导步骤。椭圆方程的化简,对于学生而言是困难的,但不管怎么困难,教师也不可越俎代庖。为了突破这个难点,我们在曲线与方程的教学过程中,引导学生小组合作进行化简,并进行了实际操作。在课堂上,督促学生运用既有策略进行独立的推导化简,通过巡视,指导仍有困难者,训练学生的代数运算能力。此处的训练对于增强学生的自信和毅力有着重要的意义。

类比学习方法是本节课的主线,而数形结合又是本节课的主调,解析法则是本节课的主要原理方法。

另外,以后的教学中,应该更多的加强学生合作探究的能力,减少教师的讲解,从而能为学生提供更多的合作机会。

[4] 椭圆的标准方程课件

作为一位杰出的老师,就不得不需要编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。写说课稿需要注意哪些格式呢?以下是小编精心整理的高三数学《双曲线及其标准方程》说课稿,希望对大家有所帮助。

一、教材分析

1、教材地位

本节课是新课程人教A版选修2—1第2章第三节第一课时。它是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,也为后面的抛物线及其标准方程做铺垫。

2、教材作用(重要模型,数形结合)

圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。

3、设计理念:体现素质教育的要求和新课程理念,融合"知识与技能"、"过程与方法"、"情感态度与价值观"三维教学目标,注重学生学习过程的体验,体现自主、合作、探究的学习方式;注重数学基本能力的培养和基础知识的掌握,又注重数学思想与方法的教育,同时反映数学学科前沿以及与科学、技术、社会的联系;教学过程中体现过程性评价对学生发展的作用,体现教师的有效指导作用。

二、目标分析

1、知识与技能目标

①理解双曲线的定义

②能根据已知条件求双曲线的标准方程。

③进一步感受曲线方程的概念,了解建立曲线方程的基本方法。

2、过程与方法目标

①提高运用坐标法解决几何问题的能力及运算能力。

②培养学生利用数形结合这一思想方法研究问题。

③培养学生的类比推理能力、观察能力、归纳能力、探索发现能力。

3、情感、态度与价值观目标

①亲身经历双曲线及其标准方程的获得过程,感受数学美的熏陶。

②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

4、重点难点

基于以上分析,我将本课的教学重点、难点确定为:

①重点:感受建立曲线方程的基本过程,掌握双曲线的标准方程及其推导方法。

②难点:双曲线的标准方程的推导。

三、学情分析:

1、知识方面:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会。

2、能力方面:学生对基本的计算机操作较为熟练、有一定的学习基础和分析问题、解决问题的能力,且有一定的群体性小组交流能力与协同讨论学习能力。

四、教法学法分析

在教法上,主要采用探究性教学法和启发式教学法。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。

启发式教学法就是以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

新课程倡导“自主、合作、探究”学习,引导学生自主探索、发现知识;通过设计问题,以支撑学生积极的学习活动,帮助他们成为学习活动的主体;创设真实的问题情境,诱发他们进行探索与解决问题。并注意培养学生的动手实践能力。

五、说教学过程

教学环节教学过程设计意图

复习引入

这一环节既可以使学生温故而知新,也为后面的学习做好铺垫。

双曲线的定义通过课本的实验探究(以动画形式展示),引入双曲线的定义:平面内与两定点的距离的差的绝对值等于常数(小于)的点的集合。

符号表示:()

其中:焦点——;焦距——(设为);

设常数

思考:

1、去掉“绝对值”后,点m的轨迹为什么?(用动画展示)

2、若常数,则点m的轨迹是什么?(用动画展示)1、让学生在具体的问题情境中经历知识的形成和发展,将实际问题抽象为数学模型,并进行解释与运用的过程。课堂教学的关键是要激发学生的求知欲,让学生主动参与,发现学习。

2、通过设问,把学生逐步引入问题情景中,通过师生互动等形式,让学生在问题中学会思考,学会学习,最终使问题得以解决。同时,问题具有一定的梯度,对学生的思考有一定的引导和启发作用。

双曲线的标准方程:

1、复习求曲线方程的一般步骤:建系、设点——列式——化简——检验

2、推导焦点在x轴和y轴上的双曲线的标准方程

学生分成两大组,一组推导焦点在x轴上的双曲线的标准方程,另一组推导焦点在y轴上的双曲线的标准方程,最后交换结论。

3、比较两种标准方程。

两点说明:①关系:②如何判断焦点的位置:看前的系数的正负,哪一项为正,则在相应的轴上。(口诀:焦点看正负!)

1、在比较如何化简方程简单后,我选择放手让学生化简,让学生体验化简方程的艰辛,经受锻炼,尝试成功,提高学生参与教学过程的积极性。

2、在得到双曲线的标准方程之后,我和学生共同总结推导双曲线标准方程的步骤,其目的是进一步强化求曲线方程的一般步骤,同时也让学生享受成功的喜悦。

3、体现类比推理的思想。培养学生归纳总结和类比推理的能力。

4、在推导过程中我令,一是为了美化方程,使方程具有对称性,二是为后面几何性质的学习做铺垫。

例题解析

例1的教学是为了让学生清楚:求双曲线的焦点坐标(或者是方程当中的),必须要把方程化为标准方程。

通过例2让学生明白,求双曲线的标准方程主要是确定两个要素:一是双曲线的位置,由焦点来决定;二是双曲线的形状,由来决定。

例3是双曲线的实际应用,关键是利用双曲线的定义来解题,要注意焦点的位置。

课堂小结:

为了让学生建构自己的知识体系,我让学生自己概括所学的内容。我认为这样既能培养了学生的概括能力,又能营造民主和谐的师生关系。

[5] 椭圆的标准方程课件

教学目标

1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.


教学建议

教材分析

1.  知识结构

 

2.重点难点分析

重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

另外要注意到定义中对“常数”的限定即常数要大于  .这样规定是为了避免出现两种特殊情况,即:“当常数等于  时轨迹是一条线段;当常数小于  时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

(2)根据椭圆的定义求标准方程,应注意下面几点:

①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

②设椭圆的焦距为  ,椭圆上任一点到两个焦点的距离为 ,令  ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程  “而没有证明,”方程  的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

(3)两种标准方程的椭圆异同点

中心在原点、焦点分别在  轴上,  轴上的椭圆标准方程分别为:    .它们的相同点是:形状相同、大小相同,都有    .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

椭圆的焦点在 轴上  标准方程中  项的分母较大;

椭圆的焦点在 轴上  标准方程中  项的分母较大.

另外,形如  中,只要    同号,就是椭圆方程,它可以化为 

(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

教法建议

(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

(3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的`概念。

教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

(4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

(5)注意椭圆的定义与椭圆的标准方程的联系

在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

(6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

(7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

(8)在学习新知识的基础上要巩固旧知识

椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

(9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。



[6] 椭圆的标准方程课件

抛物线的定义及其标准方程教学设计

1.目标和目标解析

(1)知识目标:

理解并掌握抛物线的定义及其标准方程;会求抛物线的标准方程。

(2)能力目标:

通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受坐标法及数形结合的思想

2.教学问题诊断

坐标法求抛物线的标准方程是本节课的重点和难点。通过合作交流,探究不同的建系方案,对比所得方程的异同,使学生认识到恰当建立坐标系的重要性,进一步感受坐标法的思想。在推导抛物线四种形式的标准方程的过程中,理解焦参数 的几何意义;能根据条件求出抛物线的标准方程;会根据抛物线的标准方程,求出焦点坐标、准线方程.根据以上教学内容及要求,拟定教学重、难点如下

(1)教学重点:抛物线的定义及其标准方程。

(2)教学难点:抛物线定义的形成过程及抛物线标准方程的推导

3.教学支持条件分析

新课程大力倡导积极主动、勇于探索的学习方式,为的是使学生的学习过程成为在教师引导下的“再创造”过程。通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展学生的创新意识。在本节课中,将通过适当的问题情景,在“实验”、“观察”、“思考”、“探究”与“合作交流”等一系列数学活动中,引导学生自己发现问题、提出问题、解决问题。课堂上真正以学生发展为本,鼓励学生积极参与教学活动,包括思维的参与和行为的参与;鼓励学生发现数学的规律和问题解决的途经,使他们经历知识形成的过程。最大限度地让学生在活动中学习,在主动中发展,在合作中增知,在交流中深入,在探究中创新,并达成教与学的互促互动、相得益彰的良性循环的最优局面。

教学方法:启导探究式

教学用具:多媒体课件

4.教学过程设计

(1)设置情景,引发探究

①课件演示:用几何画板设置一个直观性问题情景,已知F是平面上一个定点, 是平面上不过点F的一条定直线,点M到定点F的距离和到定直线 的距离的比是一个常数e,改变这两个距离大小的关系(即常数e的大小),观察动点M的轨迹。

②学生观察 :两个距离大小的变化;并追踪:动点M得到的轨迹形状。然后记下实验追踪结果。

③学生交流:当o<e<1时动点M得到的轨迹是椭圆;当e>1时是双曲线。

④引发探究:进而引发探究欲望:当e=1时,它又是什么曲线呢?

设计意图:数学教学需要一定问题情景的支撑,恰当的问题情景能

激起学生的情感体验,有利于学生学习兴趣的激发,也有利于学生良好数学观的形成。因此,在教学中,应力求通过恰当问题情景的创设,让学生产生积极的学习心态,在具体的情景中实现知识的学习。上述教学设计通过信息技术设置一个直观性问题情景,激发了学生探究的欲望,这时学生自然地产生了探究当动点到一定点距离与定直线距离相等(即 )时点的轨迹到底是什么的强烈愿望。让学生在“观察”、“思考”、“探究”等活动中,自己发现问题、提出问题。

(2)观察归纳,形成定义

①观察:当e=1时,曲线上的动点满足怎样几何特征?让学生通过独立思考和互相讨论,并交流看法。针对学生的回答进行引导,把学生的思维一步步引入发现规律的'最近区域,最终使得学生发现:曲线上的点到定点的距离和到一条定直线的距离相等。

②归纳:抛物线的定义

要求学生用自己的语言描述什么样的曲线是抛物线。规范学生的语言描述,提出抛物线定义的书面文字。

定义:平面内与一个定点F和一条定直线 的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线 叫做抛物线的准线。强调定义的中心句和关键词(让学生自己找出)。并与椭圆、双曲线的定义进行比较。

③反思:在抛物线定义中,要注意定点F不在定直线 上。 若定点F在定直线 上,则动点的轨迹又是什么图形呢?(此时退化为过F点且与直线 垂直的一条直线)。

④欣赏:让同学们说一说生活中有哪些图形是抛物线。然后教师用幻灯片播放一些典型的抛物线型标志性建筑,如中国的赵州桥,世界第一大拱桥——卢浦大桥、北京奥运会主场馆的拱顶、夜色下喷水池喷出的彩色水流等,让学生欣赏审美,陶冶情操,激发兴趣。

设计意图:由上述直观性问题情景引出了抛物线定义,顺理成章。教学中处处注重师生之间的互动,注重学生观察、比较、分析、概括能力的培养,注重反思环节的落实。通过学生亲身实践、主动思维,让学生在实践中得到体验,在反思中产生感悟,使学生学会思考并养成自主学习、勇于探索的良好习惯。通过让学生动口参与教学活动,培养了学生自然观察的能力和数学语言的表达能力;同时通过欣赏生活中一些抛物线型建筑,不但加强了学生对抛物线的感性认识,而且使学生受到美的享受,陶冶了情操。

(3)合作交流,导出方程

①类比:类比椭圆、双曲线标准方程的建立过程(用屏幕显示图形),让学生认真捉摸坐标系的位置特点,感悟求抛物线的方程应建立怎样的直角坐标系最好(力求使其方程形式最简单)。也可以帮助学生回顾初中二次函数图象的平移变化,从而感悟到要得到抛物线的最简方程,必须使图象过坐标原点(可使常数项为零);使图象的对称轴为x轴(或y轴)(可使方程中不含y(或x)的一次项)。

②合作:师生合作共同推导抛物线的标准方程

请学生将自己的感悟画在纸板上。学生分两人一组互相讨论,老师展示几组学生的建系方案,一一作出评价。

选择正确的一个建系方案师生一起探究抛物线方程的建立。

如推导焦点F在x轴正半轴上的抛物线标准方程。

设焦点F在x轴的正半轴上,焦点F到准线L的垂线段FN的垂直平分线为y轴,设|FN|=p。

请学生口头叙述焦点F的坐标和准线L的方程。

师生共同推导出抛物线方程:y2=2px(p>0)

指出这个方程叫做抛物线的标准方程。它表示焦点F 在x轴正半

轴上,顶点在原点的抛物线, 其准线为

③反思:建系方案的合理性。

在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系。这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用。

④探究:抛物线的标准方程的其它形式

在建立椭圆、双曲线的标准方程时,选取不同的坐标系我们得到了不同形式的标准方程。那么抛物线的标准方程还有哪些不同形式?

让学生分组求出其它三种形式的标准方程,师生协作,填充抛物线标准方程的分类表格

再反思:抛物线四种形式的标准方程与图形间的对应关系及它们之间的内在联系。从前面求椭圆、双曲线、抛物线标准方程的过程中,你是否深刻感悟到:求轨迹方程时,如何才能建立适当的坐标系?

设计意图:教学过程是师生互相交流、共同参与的过程。数学通过交流,才能得以深入发展,数学思想才能变得更加清晰;通过多边合作,又可以增强学生的合作能力与群体创造意识。教学中,只有在师生密切合作、共同探索的氛围中数学交流才能得以真正实施。上述设计在探究抛物线标准方程时,通过师生的对话交流、密切合作和信息的互动,让学生体验合作交流探究的学习过程,并自觉地建构起抛物线标准方程的知识系统。

(4)练习反馈,巩固提高

①会根据抛物线的标准方程,求出焦点坐标、准线方程

例1 已知抛物线的标准方程是 , 求它的焦点坐标和准线方程(教材例1之(1))。

变式:求下列抛物线的焦点坐标和准线方程:

⑴; ⑵ ;

感悟:你能说明二次函数 的图象为什么是抛物线吗?如何才能正确地求出它的焦点坐标、准线方程?

②能根据条件求出抛物线的标准方程

例2 已知抛物线的焦点是F ,求它的标准方程(教材例1之(2)) 。

变式:已知抛物线的焦点F到准线L的距离为4。根据下列条件求此抛物线的标准方程。

(1)若焦点F在y轴正半轴上;

(2)若焦点F在y轴上;

(3)若焦点F在x轴上;

(4)若焦点F在坐标轴上。

(5)焦点在直线 上(均由学生口答)

感悟:

①求给定抛物线的标准方程的基本方法是:待定系数法。关键是

定轴向——求p值——写方程。(若开口方向不定,则要注意分类讨论的思想。)

②在认识事物的过程中,我们不仅要善于从一些不同的事物中去发现它们的共同点,还要善于从一些相似的事物中去发现它们的不同点。

设计意图:以课本例题为本,通过变式训练这一环节,既让学生巩固和加深对抛物线及其标准方程的理解,又使学生在“练”的过程中通过反思、感悟,不断调整自己的认识结构和经验结构,完成人的经验自主建构的过程。

(5)自我总结,提炼升华

让学生回忆并小结、提炼本节课学习内容:

①抛物线的定义(其本质属性);

②抛物线的标准方程(注意四种形式的异同);

③求抛物线标准方程的基本方法:待定系数法。关键是:定轴向——求p值——写方程。

设计意图:引导学生自我反馈、自我总结,并对所学知识进行提炼升华。让学生学会学习,学会内化知识的方法与经验,促进目标达成。

5.目标检测设计

(1)书面作业:A组1(2)、(4);4(1)(2)(必做)

补充:求经过点p(4,-2)的抛物线的标准方程。(选做)

(2)课后探究:

① 的几何意义是焦点到准线的距离,其实也是抛物线的定形条件。你能说出焦参数 对抛物线的开口大小有什么影响吗?

②同学们在初中学习过二次函数,为什么二次函数 的图象是抛物线?

设计意图:为体现以学生发展为本的理念,使不同学生在数学上获得不同的发展,本作业依一定梯度进行设计,并抛出两个课后探究性问题,既是对本节课有关内容的延伸、拓展,回应了本节课内容,又是为下继内容作些铺垫、畜势,让学生有“意尤未尽”之感。同时形成开放性学习环境,满足了不同学生的需要,体现了个性化的学习,目的是努力使每一位学生都能得到成功的体验。

[7] 椭圆的标准方程课件

椭圆的标准方程



椭圆是一种非常重要的二次曲线,被广泛应用于数学、物理学和工程学中。在本篇文章中,我们将探讨椭圆的标准方程。



1.椭圆的定义和特点



椭圆是由一个动点P和两个定点F1和F2组成的几何图形,满足P到F1和F2的距离之和为定值2a(a>0)的点集合称为椭圆,F1和F2称为椭圆的焦点,线段F1F2的长度2c称为椭圆的焦距。椭圆的中心为点O,以及一条连接F1和F2的直线L称为椭圆的对称轴,和平分线段L上的点PQ称为椭圆的主轴。椭圆的离心率为e=c/a。



椭圆的特点:



1)椭圆所有点到中心的距离之和相等。



2)对称轴平分主轴,并垂直于主轴。



3)两个焦点与中心的连线平分所有相交于椭圆上两点的弦。



2.椭圆的方程



我们来研究椭圆的方程。在笛卡尔坐标系下,设椭圆的中心为点(h,k),椭圆的主轴长为2a,次轴长为2b。坐标系中一个点P(x,y)在椭圆上的条件是它到两个焦点的距离之和等于椭圆的长轴长度。



由于两个焦点到椭圆中心的距离相等,我们可以利用勾股定理得:



(x-h)^2+(y-k)^2=(ae)^2



其中,a和e是椭圆的参数之一。



我们知道,椭圆的长轴长度为2a,取竖直方向为例,则椭圆的坐标方程为:



(x-h)^2/a^2+(y-k)^2/b^2=1



椭圆的标准方程就是以上方程式,其中a和b分别为椭圆的半轴长,h和k为椭圆的中心坐标,通过调整a,b的值和h,k的值可以画出不同大小和位置的椭圆,在后续的计算中,我们可以通过该公式得到椭圆的各种性质以及计算椭圆上的各种问题。



3.椭圆的性质



1)椭圆的离心率e(0
2)椭圆的平面积为πab。



3)椭圆的周长不能用初等函数表示。



4)椭圆的离心率越接近于0,它趋近于一个圆。



4.椭圆的应用



椭圆作为一个经典的几何图形,在数学、物理学和工程学等众多领域中有着广泛的应用,下面我们介绍一些常见的应用:



1)椭圆在卫星传输、交叉轨道导弹等领域中被广泛应用,因为椭圆可以模拟被卫星或导弹跟踪的地球轨道。



2)在镜片设计中,椭圆的特殊形状可以用来修正显微镜物镜中的像差,以及在光学成像中使用的光学元件的设计。



3)在机械设计中,椭圆可以用来构建摆线齿轮、齿轮传动等机构。



4)在建筑设计中,椭圆可以决定建筑物的形状和流线型。



总结



椭圆是数学中一个重要的概念,对于我们了解数学的许多领域都有很大的帮助。椭圆的标准方程是我们研究椭圆性质以及求解问题的基础,同时,从椭圆的定义和特点来看,椭圆同样是一个非常具有美感和几何魅力的图形。

[8] 椭圆的标准方程课件

1、问题——创设质疑,引发兴趣

本节课为了引入抛物线的定义,创造学生主动探究抛物线定义的情境,课堂是从学生所熟悉的二次函数的图象开始的,还有投篮的FLASH展示,并欣赏了生活中的抛物线模型图片及著名的萨尔南拱门。特别是通过赵州桥的拱底不是抛物线,引起学生的好奇心,激发学生研究的热情。让学生回到自然与社会中来,亲自体验到真理的发现与实现过程,深深感觉到数学来源于生活。在这个引入的过程中互动方式有师生互动,人机互动。

2、发散——提供线索,引起讨论

在发现问题后,利用几何画板的演示,使学生发现形成轨迹动点的几何特征,进而得出定义。为了使课堂教学行为趋于多重整合,把学生分成活动小组,对探究过程中出现的问题进行讨论研究。这一过程培养学生勇于探究的精神和与人协作的能力,使学生真正做学习的主人。在课堂学习过程中,教师是学习活动的组织者,探究情境的创造者,探究活动的引导者,既要对学生的讨论给予引导,又要对出现的问题进行点拨。为了使实际操作和对问题的数学讨论卓有成效,课堂教学氛围民主、和谐和开放,学生的思维始终处于活跃状态,教学过程中我设置了很多引导性的问题,如“抛物线是满足什么几何条件的点的集合”,“怎么建立坐标系求抛物线的标准方程”,“大家讨论出的三种建系方案所对应的方程那种更加简单”,“四种标准方程内在联系是什么”等。在这样的教学模式下,学生各抒己见,合作学习,学会从数学的角度发现问题和提出问题,在与他人合作和交流的过程中,客观的理解他人的思考方法和结论,体验获得成功的乐趣,建立学好数学的自信心。这一过程中的互动方式是师生互动,生生互动,人机互动

3、收敛——规范要求,引控方向

收敛与发散是相辅相成,互为促进的。探究式学习并不是完全放手让学生去研究,为了能完成有效的教学目标,教师要在知识的形成阶段规范要求,引控方向。所以,探究的每一阶段均离不开教师的组织,教师为学生创设情境,调节控制学生的探究活动,教师的教学组织促进学生的探究深化;同时,学生的探究进程要求教师指导、提示、组织、引导。在引导学生归纳抛物线的定义和坐标法求抛物线的标准方程,及对四种标准方程进行规律分析的过程中,我一方面提示学生去思考、讨论和表达,一方面对学生的结论进行剖析、评价和指正。比如在比较四种标准方程的规律分析中,首先提供线索指导学生进行发散式讨论,如从图形、系数、坐标轴、正负值、对称性等入手思考,以明确问题的指向性,其次在学生讨论不完善的情况下,表明自己的看法与学生的思维发生碰撞,帮助学生修正自己的见解。互动方式是师生互动,生生活动。

4、综合——启发深入,引导探究

综合教学过程,要求学生对探究结论进行综合概括,形成知识之间的关系网络,使知识与知识之间,不同学科知识之间,数学知识与现实生活之间建立联系,将探究结论进行综合组织,并纳入自己的数学认知结构中。比如,在推导得到开口向右的抛物线标准方程后,由学生分组探究完成如下两个问题:一是写出另外三种抛物线的标准方程,焦点坐标和准线方程;二是寻求它们的内在联系,并总结记忆。这是数学探究课的中间层次,教师给出简要的过程提示和大致要求,对学生的结论可以不加限制,既做到理顺问题,尝试结论,又给学生留下一定的思维空间。互动方式是师生互动,人机互动,学生与教材互动。

5、创造——诱导点拨,引入验证

这是一个概念的深化过程,先通过一道例题应用所学知识点,再根据本节内容设置课堂练习,要求学生综合运用各知识点加以解决,提高学生综合能力。本节课设置了4道课堂练习,针对抛物线的标准方程,焦点坐标和准线方程,考察学生对解题方法的运用与数学思想的把握,对探究结论有一个质的飞跃。至此,圆满完成本节课先由形到数,再由数到形,最终达到数与形的完美结合这一指导实际生活的教学任务。互动方式是师生互动,生生互动,人机互动。

[9] 椭圆的标准方程课件

高中数学教案:椭圆的定义和标准方程教学设计

椭圆的定义和标准方程(一)

知识点整理

1.掌握椭圆的定义,会用定义解题;

2.掌握椭圆的标准方程及其简单的几何性质,熟练地进行基本量间的互求,会根据所给的方程画出图形;

3.掌握求椭圆的标准方程的基本步骤——①定型(确定它是椭圆);②定位(判断它的中心在原点、焦点在哪条坐标轴上);③定量(建立关于基本量的方程或方程组,解基本量)。

双基练习

1.椭圆的长轴位于轴,长轴长等于;短轴位于轴,短轴长等于;焦点在轴上,焦点坐标分别为,离心率=,准线方程是,焦点到相应准线的距离(焦准距)等于;左顶点坐标是;下顶点坐标是,椭圆上的点p的横坐标的范围是,纵坐标的范围是,的取值范围是。

2.椭圆上的点p到左准线的距离是10,那么p到其右焦点的距离是()

A.15B.12C.10D.8

3.⊿ABC中,已知B、C的坐标分别是(-3,0)、(3,0),且⊿ABC的周长等于16,则顶点A的轨迹方程是。

4.若椭圆短轴一端点到椭圆一焦点的距离是该焦点到同侧长轴一端点距离的3倍,则椭圆的离心率是;若椭圆两准线之间的距离不大于长轴长的3倍,则它的离心率的取值范围是。

典型例题

例1已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,且过点p(3,2),求椭圆的方程。

[10] 椭圆的标准方程课件

椭圆的标准方程

椭圆是数学中的一个非常重要的概念,它是平面内的一个几何图形,而且常常出现在各种各样的科学和工程中。在学习椭圆时,我们需要了解椭圆的标准方程,这是一个用数学语言表示椭圆的数学方程。在本次课件中,我们将会学习椭圆的标准方程,它的定义、性质和一些实际的应用。

一、椭圆的定义

椭圆是平面内由到两个给定点距离之和等于常数的点构成的几何图形。两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。同时,椭圆的中心为椭圆长轴的中点,短轴长度为长轴长度与焦点距离之差的二分之一。

二、椭圆的标准方程

对于椭圆,我们可以使用两个参数a和b来描述它的形状和大小,其中a表示椭圆长轴的长度,b表示椭圆短轴的长度。那么,椭圆的标准方程可以表示为:

(x²/a²) + (y²/b²) = 1

这是一个椭圆的标准方程,其中(x,y)是椭圆上的任意一点,并且满足上述方程式。通过这个方程,我们可以清晰地描述和表示椭圆的形状和大小。

三、椭圆的性质

椭圆拥有很多有趣的性质,其中一些最重要的性质包括:

1. 椭圆是对称的:椭圆关于它的中心点对称。

2. 焦点和直径的关系:焦点到椭圆上任意一点的距离之和等于该点到椭圆直径的长度。

3. 半径的大小:椭圆上任意一点到中心点的距离之和等于椭圆长轴长度。

四、椭圆的应用

椭圆在实际应用中有很多用途,在以下应用中经常出现:

1. 光学系统:椭圆可以用于光学系统中的聚焦和反射。

2. 车身制造:汽车、火车和飞机的设计中,椭圆的形状在零部件的制造和部署中都有所应用。

3. 地球轨道:人造卫星在地球上的轨道往往是椭圆形的。

4. 运动标准:椭圆在建立一些运动标准和计时标准时有着广泛的应用。

总之,椭圆是数学中一个非常重要的概念,它的应用广泛,在很多科学和工程领域中拥有着重要的地位。掌握椭圆的标准方程,对于理解和应用椭圆有着重要的帮助。

[11] 椭圆的标准方程课件

使用Hardy不等式和山路几何给出了一类奇异系数的椭圆型方程解的存在性结果.

作 者:姚仰新 谢朝东  作者单位:姚仰新(华南理工大学,应用数学系,广东,广州,510640)刊 名:华南理工大学学报(自然科学版)  ISTIC EI PKU英文刊名:JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION) 年,卷(期): 31(8) 分类号:O175.25 关键词:Hardy不等式   椭圆型方程   临界指数   奇异系数   正解  

[12] 椭圆的标准方程课件

椭圆的标准方程课件主题范文:

椭圆是一个广泛应用于数学和物理学领域的基本图形。在数学学科中,椭圆是一种形状类似于椭子的曲线,在平面上表示为一对轴对称的点,所以也称为椭子。在物理学中,椭圆在光学、天文学、力学和电动力学等领域都有重要的应用。因此,本次课件将着重介绍椭圆的标准方程及其应用。

一、椭圆的标准方程

椭圆的标准方程是一个用变量x,y表示的方程,它符合以下条件:

1. 有两个轴a和b,轴是椭圆的最长和最短直线段。

2. 椭圆中心点是坐标系的原点0,0。

3. 椭圆是x轴和y轴的对称图形。

根据这些条件,我们可以得出椭圆的标准方程:

(x^2 / a^2) + (y^2 / b^2) = 1

其中x和y是坐标变量,a和b是椭圆的长轴和短轴。

二、椭圆的特点

1. 椭圆的离心率:椭圆的离心率可以通过方程中的a和b计算得到,公式为 e = √(a^2 - b^2) / a。

2. 椭圆的焦点:椭圆的焦点是与椭圆的离心率相关联的点。在椭圆上,存在两个焦点,它们距离椭圆中心的距离为离心率的值。这些焦点与椭圆的形状和大小有关。

3. 椭圆的直径:椭圆的直径是两个离焦点最远的点之间的距离。它可以通过方程中的a和b计算得到直径的大小,公式为 2a 和 2b。

三、椭圆的应用

1. 光学:在光学中,椭圆通常用于描述聚光灯和椭圆镜的形状。椭圆镜在大功率激光器、雷达和光学激光器的聚焦中广泛使用。

2. 天文学:在天文学中,椭圆应用广泛。椭圆轨道可以描述行星、卫星和彗星的运动。例如,地球绕着太阳运动的轨迹可以近似为椭圆。

3. 电动力学:在电动力学中,椭圆被用来描述天线的辐射模式。具体方法是将椭圆和一些其他曲线叠加起来来模拟天线周围的电学场。

总之,椭圆的标准方程及其应用涉及到许多不同领域,从光学到天文学到电动力学。因此对于学习数学和物理学的读者来说,熟悉椭圆方程和它的特性是非常重要的。

文章来源:https://www.jt56w.com/xueshengjiantaoshu/156781.html