对数函数英语教案(汇编17篇)。
在教学工作者开展教学活动前,时常需要编写教案,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?下面是小编精心整理的对数函数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
对数函数英语教案 篇1
根据小学英语兴趣性原则,活动性原则和生活性原则,在实施教学过程中充沛体现同学是学习的主体,要充沛调动同学的积极性.这是我设计这课时的理念.
设计思路:
本课是一节复习拓展课。一般来说,复习课是比较枯燥乏味的。我尝试着改变这一现象.所以在这节课一开始复习词组和句子的时候,我借助了多媒体,运用了动画的形式,使同学很有兴趣地来复习。我觉得既激发了同学的兴趣,又达到了复习的目的..
而在复习的过程中不应该仅局限于课本知识,所以我又根据实际情况,拓展了与同学生活贴近的词组kick shuttlecock和play badminton. 在教授这两个词组的时候,我运用了实物教学,因为贴近生活,同学学的很积极.为了让同学容易记住这两个词组,我把词组和句型联系起来,编了一个简单的chant,这个倒让同学很感兴趣。同学都跃跃欲试.因为简单易学,同学最后也能将自身的喜好编成chant.这样一来,同学就有了学习的成绩感。
假如这节课让同学不停的互相问各自的喜好,未免有一些枯燥,所以我也设置一个让同学问“小动物”喜好的场景。这个小细节不只让同学有效地复习了所学的知识,同时也让课堂变的轻松有趣。小同学比较喜欢童话,所以我就索性把“童话”搬到了课堂,同学特别喜欢这样的形式。看的出来同学是兴奋的,我觉得这时候在课堂也掀起了一个小高潮。
我在这节课中还拓展了与生活比较贴切的句型:What do you like best? 并让同学进行操练。在这节课中,我还为同学布置了一个动笔的机会.让同学在课前发的星星上写下自身的名字和他们的喜好.最后我又创设了一个真实环境,让同学选择自身喜欢的俱乐部。并扩展了句型:What club are you in?最后将课堂推向高潮。
回顾这节课,我也看到了一些缺乏.首先我觉得自身要加强自身的专业素质,同时也要加强自身的课堂驾驭能力。比方在教授What do you like best?这个环节中,由于教者急于求成,导致同学并没有完全领会到这句话的意思,在操练这个句型的时候,同学显得有点手足无措。而在最后一个环节中,时间显得有些过紧。我觉得在前面几个环节中,还可以压缩时间,让同学在最后一个环节中得到更多的锻炼。另外,我觉得我这节课还可以增大容量,让同学增加语言的输出和输入量。
对数函数英语教案 篇2
写课题(Topic)和课型(Lesson Type)
课题相当于文章的标题,讲课时要首先告诉学生,并写在黑板上。因此要写得准确。课型是指该节课的讲授类型。初中英语的主要课型有::新授课(New lesson)、巩固课(Reinforcement Lesson)、复习课(Revision Lesson)、语音课(Phonetic Lesson)、听力课(Listening Lesson)、听说课(Aural-Oral Lesson)、阅读课(Reading Lesson)、语法课(Grammar Lesson)等。不同的课型应用不同的授课方式或方法,只有确定了课型,才能选择有效的素质教育教学方法。
写教学目标(Teaching Objective)
教学目标是教案的核心内容,是教师施教的准绳。教学目标要符合大纲对教材的要求。由于教学目标要在课堂上展示给学生,让学生明确,所以写素质教育目标时,要力求简明扼要,浅显易懂,便于操作和检测,一般3~4个目标为宜。
写教学的重点(Main/focal Points)、难点(Difficult Points)和关键点(Key Points)
教学重点是课堂教学的.主要任务;教学难点是师生顺利完成教学任务的障碍;素质教学关键是攻克教学难点的突破口。在教案中写清一节课的教学重点、难点和关键点,能提醒教师在讲课时注意突出重点、突破难点、抓住关键。
写教具(Teaching Tools)
课堂上需要什么教具要写清楚,如录音机、教材录音带、教学挂图、卡片、实物(或模型)、小黑板、刻印好的练习题、彩色粉笔、幻灯片等。
写教学过程(Teaching Procedure)
教学过程是教案的主要部分。写教学过程主要写以下几方面的内容:
1、 写教学环节。教学环节即教学任务是什么要写清楚,做到心中有数。目前有些教师采用"三阶段六环节"教学模式,即:准备阶段(自由交流、复习检查)、讲练阶段(导入课程、分层操练)和发展阶段(巩固发展、布置作业)。
2、 写知识点和所用时间。写好知识点,教师使用教案时能一目了然,有的放矢。写好所用时间,能使教师从容掌握教学速度,合理安排每个教学环节所需的时间,充分利用课堂时间。
3、 写教师活动。不仅要写教师"教什么",还要写出教师"怎样教",即写清楚教师要教的内容,写出讲授这些内容的方法。写出课堂用语和各环节的过渡语。课堂用语要求简练、口语化,用学生已经学过的熟悉的、听得懂的英语来解释或表达新的教学内容。各环节之间的过渡语要自然流畅。写出使用教具的时机和方法,写板书内容等。
4、 写学生活动。写出学生学习的内容和学习方法,特别是怎样学应写清楚。不能简单地把学生活动写成听、读、思考、操练、做题等。
对数函数英语教案 篇3
“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。作了以上分析之后,再分a>1与0。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
然后经行巩固训练,养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的`思想。通过反馈来看,大部分学生能够达到本节课的知识目标,并在一定程度上培养了学生主学习、综合归纳、数形结合的能力。最后经行归纳总结,引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
本节课调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,充分体现了“教师为主导,学生为主体”的教学原则取得了较好的教学效果。
对数函数英语教案 篇4
1、设计理念
本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。
2、突出重点、突破难点策略
探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛。教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的.一般方法。教学中还注意到尊重学生的个体差异,使每个学生都学有所获。
3、分层教学
根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业。
本节课所要研究的一次函数,其b应交易于从所给的条件中获得,从而将问题转化为通过另一条件确定斜率k。但在教学中没有注意控制问题的难度,至于一般的有两个条件利用二元一次方程组确定函数表达式的问题,应放在下一章的最后一节,以加强方程与函数的联系。
对数函数英语教案 篇5
教学目标:
利用数形结合的数学思想分析问题解决问题。
利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。
在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。
教学重点和难点:
运用数形结合的思想方法进行解二次函数,这是重点也是难点。
教学过程:
(一)引入:
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图
(2)顶点、图象与坐标轴的交点
(3)所形成的三角形以及四边形的面积
(4)对称轴
从上面的问题导入今天的课题二次函数中的图象与性质。
(二)新授:
1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。
再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。
再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。
2、让同学讨论:从已知条件如何求二次函数的解析式。
例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。
(三)提高练习
根据我们学校人人皆知的`船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
(四)让学生讨论小结(略)
(五)作业布置
1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。
2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。
3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。
(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)
对数函数英语教案 篇6
对数函数及其性质教学设计
1.教学方法
建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.
在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导
新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。
3.教学手段
本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.
4.教学流程
四、教学过程
教学过程
设计意图
一、创设情境,导入新课
活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。
(2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系:,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式。
(3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知
(4)由表格中的数据:
碳14的含量P
0.5
0.3
0.1
0.01
0.001
生物死亡年数t
5730
9953
19035
39069
57104
可读出精确年份为39069,当P值为0.001时,t大约为57104年,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。
(5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。
(6)把函数模型一般化,可给出对数函数的概念。
通过这个实例激发学生学习的兴趣,使学生认识到数学来源于实践,并为实践服务。
和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。
二、形成概念、获得新知
定义:一般地,我们把函数
叫做对数函数。其中x是自变量,定义域为
例1求下列函数的定义域:
(1);(2).
解:(1)函数的定义域是。
(2)函数的定义域是。
归纳:形如的的函数的定义域要考虑—
三、探究归纳、总结性质
活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。
选取完成最好、最快的小组,由组长在班内展示。
活动2:小组讨论,对任意的a值,对数函数图象怎么画?
教师带领学生一起举手,共同画图。
活动3:对a>1时,观察图象,你能发现图象有哪些图形特征吗?
然后由学生讨论完成下表左边:
函数的图象特征
函数的性质
图象都位于y轴的右方
定义域是
图象向上向下无限延展
值域是R
图象都经过点(1,0)
当x=1时,总有y=0
当a>1时,图象逐渐上升;
当0当a>1时,是增函数
当0通过对定义的进一步理解,培养学生思维的严密性和批判性。
通过作出具体函数图象,让学生体会由特殊到一般的研究方法。
学生可类比指数函数的研究过程,独立研究对数函数性质,从而培养学生探究归纳、分析问题、解决问题的能力。
师生一起完成表格右边,对0<a<1时,找两位同学一问一答共同完成,再次体现数形结合。
四、探究延伸
(1)探讨对数函数中的符号规律.
(2)探究底数分别为与的对数函数图像的关系.
(3)在第一象限中,探究底数分别为的对数函数图象与底数a的关系.
五、分析例题、巩固新知
例2比较下列各组数中两个值的大小:
(1),;
(2),;
(3),。
解:
(1)在上是增函数,
且3.4
(2)在上是减函数,
且3.4
(3)注:底数非常数,要分类讨论的范围.
当a>1时,在上是增函数,
且3.4
当0且3.4
练习1:比较下列两个数的大小:
练习2:比较下列两个数的大小:
(找学生上黑板讲解练习2的第一题,强调多种做法,一起完成第二小题.)
考察学生对对数函数图像的`理解与掌握,进一步强调数形结合。
通过运用对数函数的单调性“比较两数的大小”培养学生运用函数的观点解决问题,逐步向学生渗透函数的思想,分类讨论的思想,提高学生的发散思维能力。
六、对比总结、深化认识
先总结本节课所学内容,由学生总结,教师补充,强调哪些是重要内容
(1)对数函数的定义;
(2)对数函数的图象与性质;
(3)对数函数的三个结论;
(4)对数函数的图象与性质的应用.
七、课后作业、巩固提高
(1)理解对数函数的图象与性质;
(2)课本74页,习题2.2中7,8;
(3)上网搜集一些运用对数函数解决的实际问题,根据今天学习的知识予以解答.
八、评价分析
坚持过程性评价和阶段性评价相结合的原则。坚持激励与批评相结合的原则.
教学过程中,评价学生的情绪、状态、积极性、自信心、合作交流的意识与独立思考的能力;
在学习互动中,评价学生思维发展的水平;
在解决问题练习和作业中,评价学生基础知识基本技能的掌握.
适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。
课后作业的设计意图:
一、巩固学生本节课所学的知识并落实教学目标;二、让不同基础的学生学到不同的技能,体现因材施教的原则;
三、使同学们体会到科学的探索永无止境,为数学的学习营造一种良好的科学氛围。
对数函数英语教案 篇7
课题:指数函数与对数函数的性质及其应用
课型:综合课
教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。
重点:指数函数与对数函数的特性。
难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。
教学方法:多媒体授课。
学法指导:借助列表与图像法。
教具:多媒体教学设备。
教学过程:
一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。
二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。
指数函数与对数函数关系一览表
函数
性质
指数函数
y=ax (a>0且a≠1)
对数函数
y=logax(a>0且a≠1)
定义域
实数集R
正实数集(0,﹢∞)
值域
正实数集(0,﹢∞)
实数集R
共同的点
(0,1)
(1,0)
单调性
a>1 增函数
a>1 增函数
0<a<1 减函数
0<a<1 减函数
函数特性
a>1
当x>0,y>1
当x>1,y>0
当x<0,0<y<1
当0<x<1, y<0
0<a<1
当x>0, 0<y<1
当x>1, y<0
当x<0,y>1
当0<x<1, y>0
反函数
y=logax(a>0且a≠1)
y=ax (a>0且a≠1)
图像
Y
y=(1/2)x y=2x
(0,1)
X
Y
y=log2x
(1,0)
X
y=log1/2x
三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。
Y
y=(1/2)x y=2x y=x
(0,1) y=log2x
(1,0) X
y=log1/2x
注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。
四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。
五、 例题
例⒈比较(Л)(-0.1)与(Л)(-0.5)的.大小。
解:∵ y=ax中, a=Л>1
∴ 此函数为增函数
又∵ ﹣0.1>﹣0.5
∴ (Л)(-0.1)>(Л)(-0.5)
例⒉比较log67与log76的大小。
解: ∵ log67>log66=1
log76<log77=1
∴ log67>log76
注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。
例⒊ 求y=3√4-x2的定义域和值域。
解:∵√4-x2 有意义,须使4-x2≥0
即x2≤4, |x|≤2
∴-2≤x≤2,即定义域为[-2,2]
又∵0≤x2≤4, ∴0≤4-x2≤4
∴0≤√4-x2 ≤2,且y=3x是增函数
∴30≤y≤32,即值域为[1,9]
例⒋ 求函数y=√log0.25(log0.25x)的定义域。
解:要函数有意义,须使log0.25(log0.25x)≥0
又∵ 0<0.25<1,∴y=log0.25x是减函数
∴ 0<log0.25x≤1
∴ log0.251<log0.25x≤log0.250.25
∴ 0.25≤x<1,即定义域为[0.25,1)
六、 课堂练习
求下列函数的定义域
1. y=8[1/(2x-1)]
2. y=loga(1-x)2 (a>0,且a≠1)
七、 评讲练习
八、 布置作业
第113页,第10、11题。并预习指数函数与对数函数
在物理、社会科学中的实际应用。
对数函数英语教案 篇8
一、内容与解析
(一)内容:对数函数的性质
(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析
(一)教学目标:
1.掌握对数函数的性质并能简单应用
(二)解析:
(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().
五、教学过程
问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。
设计意图:
师生活动(小问题):
1.这些对数函数的解析式有什么共同特征?
2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质
4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?
问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。
问题3.根据问题1、2填写下表
图象特征函数性质
a>10<a<1a>10<a<1
向y轴正负方向无限延伸函数的值域为R+
图象关于原点和y轴不对称非奇非偶函数
函数图象都在y轴右侧函数的定义域为R
函数图象都过定点(1,0)
自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数
在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1
在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1
[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成
例1.比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m log 0.3 n
(3) log a m 1)
例2.(1)若 且 ,求 的取值范围
(2)已知 ,求 的取值范围;
六、目标检测
1.比较 , , 的大小:
2.求下列各式中的x的值
(1)
演绎推理导学案
2.1.2 演绎推理
学习目标
1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;
2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.
学习过程
一、前准备
复习1:归纳推理是由 到 的推理.
类比推理是由 到 的推理.
复习2:合情推理的结论 .
二、新导学
※ 学习探究
探究任务一:演绎推理的'概念
问题:观察下列例子有什么特点?
(1)所有的金属都能够导电,铜是金属,所以 ;
(2)一切奇数都不能被2整除,20xx是奇数,所以 ;
(3)三角函数都是周期函数, 是三角函数,所以 ;
(4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .
新知:演绎推理是
的推理.简言之,演绎推理是由 到 的推理.
探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?
所有的金属都导电 铜是金属 铜能导电
已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断
大前提 小前提 结论
新知:“三段论”是演绎推理的一般模式:
大前提—— ;
小前提—— ;
结论—— .
新知:用集合知识说明“三段论”:
大前提:
小前提:
结 论:
试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.
※ 典型例题
例1 命题:等腰三角形的两底角相等
已知:
求证:
证明:
把上面推理写成三段论形式:
变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD
例2求证:当a>1时,有
动手试试:1证明函数 的值恒为正数。
2 下面的推理形式正确吗?推理的结论正确吗?为什么?
所有边长相等的凸多边形是正多边形,(大前提)
菱形是所有边长都相等的凸多边形, (小前提)
菱形是正多边形. (结 论)
小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.
三、总结提升
※ 学习小结
1. 合情推理 ;结论不一定正确.
2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.
3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
4.归纳推理是由 到 的推理;
类比推理是由 到 的推理;
演绎推理是由 到 的推理.
后作业
1. 运用完全归纳推理证明:函数 的值恒为正数。
直观图
总 课 题空间几何体总课时第4课时
分 课 题直观图画法分课时第4课时
目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.
重点难点用斜二侧画法画图.
引入新课
1.平行投影、中心投影、斜投影、正投影的有关概念.
2.空间图形的直观图的画法——斜二侧画法:
规则:(1)____________________________________________________________.
(2)____________________________________________________________.
(3)____________________________________________________________.
(4)____________________________________________________________.
例题剖析
例1 画水平放置的正三角形的直观图.
例2 画棱长为 的正方体的直观图.
巩固练习
1.在下列图形中,采用中心投影(透视)画法的是__________.
2.用斜二测画法画出下列水平放置的图形的直观图.
3.根据下面的三视图,画出相应的空间图形的直观图.
课堂小结
通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.
对数函数英语教案 篇9
一、反思分析
1、 本节课的设计由学生掌握的知识为切入点,教给学生探求知识(确定一次函数表达式)的方法,教会学生获取知识的本领,通过学生主动参与、观察、讨论交流,动手解题等探索知识的过程。
2、由两个条件确定一些简单的一次函数表达式是本课时的重点。本节课一系列问题的设置,是想要学生通过图象、文字、表格发现条件,确定表达式,解决问题。
3、教学设计沿着:①思考为中心;②问题为载体;③探索为主线;④能力为目标的四个环节展开,始终体现教师是课堂教学的组织者、引导者、合作者的角色,学生是教学活动的主体,课堂的主人,不仅学会了确定一次函数表达式的知识,而且学会了解决函数问题的思想方法,使学生变"学会"为"会学",乐学的新理念。
二、激发学生主体参与学习方面的优缺点
1、本节课力图首先解决有一个系数待定的.情况,让绝大部分学生掌握,对于两个系数待定的情况,让中等偏上的学生掌握,学习能力较差的学生慢慢体会,等教学活动三评讲之后,再跟踪练习,加上教学活动五的归纳,就可以让不同水平的学生先后得到提高。但是在教学活动中由于过多分析待定系数的情况,导致两个系数待定的实际应用题分析的不够彻底。
2、本节课还通过解决问题方法的探索,来提高学生分析问题、解决问题的能力。原>计划通过不同的探索方式来保证学生既有自主探索又有合作交流,使得课堂探索方式多样化,学生各方面的能力得以全面提高。但在教学过程中没有的兼顾不同层面学生的学习与收获。
对数函数英语教案 篇10
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:
对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的.单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1板书:解:ⅰ)当0∵5.1loga5.9ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,∵5.1师:请同学们观察一下⑵中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”, log0.50.6>0,lnл>0,logл0.51,log0.50.6板书:略。师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。2 函数的定义域, 值 域及单调性。例 2 ⑴求函数y=的定义域。⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。板书:解:∵ 2x-1≠0 x≠0.5log0.8x-1≥0 , x≤0.8x>0 x>0∴x(0,0.5)∪(0.5,0.8〕师:接下来我们一起来解这个不等式。分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。师:请你写一下这道题的解题过程。生:解: x2+2x-3>0 x1(3x+3)>0 , x>-1x2+2x-3不等式的解为:1例 3 求下列函数的值域和单调区间。⑴y=log0.5(x- x2)⑵y=loga(x2+2x-3)(a>0,a≠1)师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。下面请同学们来解⑴。生:此函数可看作是由y= log0.5u, u= x- x2复合而成。对数函数英语教案 篇11
内容与解析(一)内容:对数函数及其性质(二)解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查。题型主要是选择题和填空题,命题灵活。学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用。一、目标及其解析:(一)教学目标(1)了解对数函数在生产实际中的简单应用。进一步理解对数函数的图象和性质;(2)学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质。。(二)解析(1)在对数函数中,底数且,自变量,函数值。作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确。(2)反函数求法:①确定原函数的值域即新函数的定义域。②把原函数y=f(x)视为方程,用y表示出x。③把x、y互换,同时标明反函数的定义域。二、问题诊断分析在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。三、教学支持条件分析在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。四、教学过程问题一。对数函数模型思想及应用:①出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升。(Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?(Ⅱ)纯净水摩尔/升,计算纯净水的酸碱度。②讨论:抽象出的函数模型?如何应用函数模型解决问题?强调数学应用思想问题二。反函数:①引言:当一个函数是一一映射时,可以把这个函数的因变量作为一个新函数的自变量,而把这个函数的自变量新的函数的因变量。我们称这两个函数为反函数(inverse function)②探究:如何由求出x?③分析:函数由解出,是把指数函数中的自变量与因变量对调位置而得出的习惯上我们通常用x表示自变量,y表示函数,即写为。那么我们就说指数函数与对数函数互为反函数④在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质?⑤分析:取图象上的几个点,说出它们关于直线的对称点的坐标,并判断它们是否在的图象上,为什么?⑥探究:如果在函数的图象上,那么P0关于直线的'对称点在函数的图象上吗,为什么?由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线对称)⑦练习:求下列函数的反函数:;(师生共练小结步骤:解x;习惯表示;定义域)(二)小结:函数模型应用思想;反函数概念;阅读P84材料五、目标检测1(20xx全国卷Ⅱ文)函数y=(x 0)的反函数是1B解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B。2(20xx广东卷理)若函数是函数的反函数,其图像经过点,则()2 B解析:,代入,解得,所以,选B。3求函数的反函数3解析:显然y0,反解可得,将x,y互换可得。可得原函数的反函数为。对数函数英语教案 篇12
教学目标1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.教学重点,难点重点是理解对数函数的定义,掌握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发研讨式教学用具投影仪教学过程一. 引入新课今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.提问:什么是指数函数?指数函数存在反函数吗?由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:由 得 .又 的值域为 ,所求反函数为 .那么我们今天就是研究指数函数的反函数-----对数函数.二.对数函数的图像与性质 (板书)1. 作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的`关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.具体操作时,要求学生做到:(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).(2) 画出直线 .(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:2. 草图.教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)3. 性质(1) 定义域:(2) 值域:由以上两条可说明图像位于 轴的右侧.(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的当 时,在 上是减函数,即图像是下降的.之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:当 时,有 ;当 时,有 .学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)对图像和性质有了一定的了解后,一起来看看它们的应用.三.巩固练习练习:若 ,求 的取值范围.四.小结五.作业 略对数函数英语教案 篇13
1、复习巩固上节课学习的课堂用语以及句型和新单词。2、学习书中内容并填空。教师让学生翻开书本第一页齐读一遍,鼓励学生进行角色扮演。3、找学生出来表演,让一个男学生(扮演Ken)和一个女学生(扮演Ann,可用自己的名字)在讲台前作自我介绍的表演。完成后继续让其他的.同学出来表演。最后把Learntosay填空。4、课堂活动通过学习句型,对学生进行礼貌教育,使新同学之间互相认识。(1)把全班同学分成若干组,各组按顺序到相邻的下一组一对一对地自我介绍。(2)开火车练习句型,看看哪一组最快最好地把句型背出来,奖励一支小红旗。5、同桌之间互相检查对方是否已熟练掌握新句型(互相背诵)。6、布置作业:背诵Hello和Learntosay的内容。对数函数英语教案 篇14
《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。成功之处:1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。遗憾之处:1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的.参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。对数函数英语教案 篇15
一、教材分析。本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第2节第二课《对数函数及其性质》。本节课的内容在教材中起到了承上启下的关键作用。一方面,对数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上,进行研究的第一个重要的基本初等函数。作为基本初等函数,它是继指数函数之后对高中函数概念及性质的又一次应用;另一方面,对数函数是后续学习幂函数的基础,对于研究幂函数及其他基本初等函数,在研究方法上起到示范作用。二、学生分析。从学生的知识上看,学生已经学习了函数的定义、图像、性质,对函数的性质和图像的关系已经有了一定的认识。学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。从学生现有的学习能力看,通过初中对函数的认识与理解,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,初步具备了抽象、概括的能力。通过教师启发式引导,学生能自主探究完成本节课的学习,会进行多媒体的基本操作。三、教学目标。1、知识与技能目标:①通过具体实例了解对数函数模型的实际背景。②初步理解对数函数的概念、图像和性质。2、过程与方法目标:①借助课件绘制对数函数图像,加深对定义的.认识,增强对对数函数图像的直观感知。②学生观察对数函数图像,通过代表发言等活动,探究对数函数性质。③通过对对数函数的研究,体会数形结合、由具体到一般及类比思想。3、情感态度与价值观目标:通过小组讨论、代表发言活动,培养合作交流意识。四、教学环境与准备。多媒体网络教室、课件。五、教学过程。1、探究新知。(1)归纳定义。设计意图:通过对函数解析式的分析,突出对底数取值的认识,引导学生把解析式概括为的形式,为形成对数函数定义作铺垫。对数函数的定义:一般地,形如(且)的函数叫做对数函数,其中是自变量,函数的定义域为 。师生共同分析定义要点:①定义域为。②对数函数是形式化的定义。③且。教师引导学生将指数函数定义与对数函数定义作对比。(2)作图探究。问题2:我们研究函数的一般过程是什么?①教师启发学生思考:归纳定义,画出图像,观察图像,总结性质,继而进行性质应用。(设计意图:对数函数作为基本初等函数,是继指数函数后对高中函数概念及性质的再次应用,学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。)②作图1:画出函数的图像。学生独立在坐标纸上作图,教师巡视个别辅导,正投对比展示学生作图结果,总结作图要点,规范列表、描点、连线的每一步。(设计意图:描点法作图是画函数图像的基本方法,用正投呈现学生作图结果,培养学生画图基本功。)③作图2:自主选择底数绘制对数函数的图像。④设组确定的对数函数图像。(设计意图:学生通过在同一坐标系中,绘制多个对数函数图像,在绘制过程中,可以更加直观地感知底数对对数函数图像的影响,能更好地观察图像特征,总结图像性质。)⑤学生自主选择底数,绘制对数函数图像,”,各小组根据所绘制的对数函数图像,观察图像特征,总结性质,每组自荐一名代表发言。教师适时发问、点拨,引导学生总结,师生、生生互动交流。观察图像,你认为如何对对数函数进行分类研究?各小组学生共提出两类标准:a、按图像上升和下降分两类。b、按底数分两类。经教师引导,学生发现这两类标准可以统一:与图像上升统一;与图像下降统一。⑥你能结合屏幕上所呈现的对数函数图像,观察它们的图像特征,并总结其性质吗?各组学生从图像位置、特殊点、图像变化趋势等方面总结图像特征。(设计意图:学生通过观察具体对数函数图像,应用数形结合思想,归纳概括性质。)(设计意图:通过几何画板课件的动态演示,学生更直观地观察到对数函数图像随底数的变化情况,以及为什么要把底数分为和两类,有利于学生由图像归纳性质,从而突破本节课的难点。)(3)归纳性质。学生观察图像,讨论总结性质。(设计意图:学生总结性质,培养学生归纳概括能力。)师生共同对学习内容进行总结:①研究函数的一般过程是:定义→图像→性质→应用。②借助图像研究性质,应用了数形结合思想;由具体对数函数入手,到一般对数函数总结性质,应用由特殊到一般思想方法;对数函数对底数分类进行研究性质,应用了分类讨论思想,类比指数函数研究对数函数,应用了类比思想。3、例题讲解。师:刚才我们共同探究得出性质,下边看性质应用。例1:比较下列各组中两个值的大小:① ;② ;③ 。(设计意图:通过例题使学生体会对数函数单调性应用,设计三题,使学生体会分类讨论思想。)第一题教师引导讲解,示范解答过程,第二题、第三题学生正投讲解。设计意图:通过学生正投讲解题目做法,培养学生学习数学的信心和勇气,同时,对于出现的错误及时纠错,起到示范作用。4、归纳总结。(1)这节课你学到哪些知识?(2)这节课你体会到哪些数学思想方法?5、分层作业。(1)必做题:P73,2、3;(2)选作题:函数和的图像间有何关系?六、教学反思。1、 设计问题系列,驱动教学。问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。2、借助信息技术突出重点、突破难点。本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:(1)探究对数函数概念:课上播放PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。(2)绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。(3)探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。设计“动手实践2”,教师运用课件的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。(4)运用课件“演示””功能,使得大量图像共享成为可能,使得学生小组代表发言活动得以实施,提高了学生对研究过程的参与程度,使得学习效率明显提高,更为有效地突破学习难点。对数函数英语教案 篇16
本节课是在学生掌握了一次函数的一般形式以及图像的特点的基础上展开教学的。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求一些简单的一次函数表达式,并能解决有关现实问题。本节课从生活中的路程、速度、时间问题入手,让学生感受确定一次函数表达式的必要性。通过一系列问题的设计,让学生运用不同的探索方式解决问题,从而各方面的能力得以全面提高,兼顾了不同层面学生的学习。鼓励学生从函数图象中获取条件,注重发展了学生的.数形结合的思想方法,以及综合分析解决问题的能力,为后继学习打下基础。唯一感觉不足之处就是对学生估计太高,板书了一个确定函数表达式的过程,以为学生能够准确写出过程,但检测时还有一部分学生过程写的不是很规范,下节课需要再次强调。总之,对学生要耐心细致,更要严格要求。对数函数英语教案 篇17
教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.(指图说明.)师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)生:较大的函数值的函数.师:那么减函数呢?生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整.)师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?(学生思索.)学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?生:不能.因为此时函数值是一个数.师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.师:还有没有其他的关键词语?生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的`提示.)师:“属于”是什么意思?生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.师:如果是闭区间的话,能否取自区间端点?生:可以.师:那么“任意”和“都有”又如何理解?生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻.)生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.师:那么如何来说明“都有”呢?生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)三、概念的应用例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?(用投影幻灯给出图象.)生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.(指出用定义证明的必要性.)师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数.师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)调函数吗?并用定义证明你的结论.师:你的结论是什么呢?上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.上是减函数.(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分.(2)要说明三个代数式的符号:k,x1·x2,x2-x1.要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)四、课堂小结师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.五、作业1.课本P53练习第1,2,3,4题.数.=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].(*)+b>0.由此可知(*)式小于0,即f(x1)<f(x2).课堂教学设计说明是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.