分数除法教案
发表时间:2025-05-03分数除法教案(通用十六篇)。
作为一名教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。那么写教案需要注意哪些问题呢?以下是小编帮大家整理的数学《分数除法》教案,仅供参考,大家一起来看看吧。
分数除法教案 篇1
教学目标
1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。
2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。
教学重点和难点
确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。
教学过程
(一)复习准备
1.找出单位1。
2.出示第88页的复习题。
(1)画图分析并列式解答。
(2)说说你是怎样思考和解答的?
(3)学生分析教师板演线段图。
3.导入:
今天我们继续学习分数应用题。
(二)学习新课
现在老师把这道题改动一下。
1.出示例6。
千克?
2.分析解答。
(1)读题,找出已知条件和问题。
(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的
不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)
(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位
(4)谁来分析这个条件?
成8份,吃了的占其中的5份。)
学生分析的同时教师板演线段图:
(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?
生在黑板上画出:
(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)
(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)
(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它
(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)
(10)试着在练习本上列方程解答。
(11)谁能说说你是怎样解答的?
生口述:
解 设买来大米x千克。
答:买来大米40千克。
题中的等量关系式是什么?
(买来的重量还剩几分之几=还剩的重量。)
3.小结。
通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)
解答方法相同吗?为什么?
(解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)
4.出示例7。
烧煤多少吨?
(1)读题,找出已知条件和所求问题。
(3)画图分析解答。
①从这个条件可以看出题中是几个数量相比?(两个数量相比。)
追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)
我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)
②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)
下一步画什么?(实际烧煤吨数。)
指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的
这两条线段谁为已知?谁为未知?
在提问回答的.过程中教师板演线段图:
③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?
(计划烧煤吨数-节约吨数=实际烧煤吨数。)
计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)
④试做在练习本上。
⑤反馈:说说你的解答方法及依据。
解 设四月份原计划烧煤x吨。
答:四月份原计划烧煤135吨。
(1)学生独立画图分析并列式解答。
(2)反馈提问:
②你用什么方法解答的?依据的等量关系式是什么?
(三)课堂总结
今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?
(数量间的等量关系相同,解答方法不同。)
(四)巩固反馈
(1)课本第91页的第2题。
(2)根据列式补充条件:
(五)布置作业
课本第91页第1,3题。
课堂教学设计说明
本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。
由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。
在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
分数除法教案 篇2
教学内容:
教科书第55~56页例1及“试一试”“练一练”,练习十一第1~4题。
教学目标:
1、通过本课的学习使学生理解分数除以整数的计算的方法。
2、用两种不同的方法来理解分数除以整数的计算的思路。
3、通过观察发现并总结出分数除以整数的计算的方法。
教学重点:
分数除以整数的计算的方法
教学难点:
分数除以整数的计算方法的总结。
教学对策:
让学生在观察,然后用自己的语言来总结出分数除以整数的计算的方法。
教学过程:
一、引入
1、通过上一单元的学习我们已经学会了如何来计算分数乘法,从今天这节课开始我们将开始学习新的内容。
2、说出下面数的倒数是多少?
3 5 9
二、新课
出示挂图让学生进行观察
例题1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
2、请学生先在左边的图中分一分再列出算式
分析:学生可能会出现以下的两种情况
情况1:把4/5平均分成2份,就是把4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。
情况2:把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。
3、并请学生把这两种不同的思路进行按照思路进行计算。这里要注意学生所想的要和他的思路所对应。
4、两种方法让学生进行充分的讨论。
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数等于分数乘以这个整数的倒数的思路。
5、让学生做试一试的`题
通过本题的计算使学生先用刚才的方法来计算。
分析:用刚才的方法来进行计算肯定会发现问题。因为在这的分子4不能被3进行整除,所以迫使学生使用刚才所讨论的第2个方法来进行计算。
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
6、再请学生进行交流
我们该如何计算分数除以整数?
交流好以后请学生进行回答。
小结:通过刚才我们的学习我们知道分数除以整数的计算的方法是多样的,但用分子平均分成几份的这种方法有局限性,我们一般选择的方法是除以一个数等于乘以这个数的倒数。
三、课本56页的练一练
1、第1题
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
2、第2题
注重样让学生用乘法来计算
做好以后进行集体讲解和订正。
3、第3题
学生独立做,能根据题目灵活选择计算方法。
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
四、小结
今天学习了什么内容?我们怎么来计算分数除以整数?
课前思考:
例题1结合具体的情境,帮助学生掌握分数除以整数的计算方法,书上介绍了两种方法,其中第一种方法有一定的局限性,即分子必须是整数的倍数,而第二种方法具有普遍意义。
我准备这样处理:复习导入部分的第一、二两个环节同潘老师处理方法,第三个环节改为例题1的准备题:
(1)饮料瓶中有2升饮料,平均分给2个小朋友喝,每人可以喝多少升?
(2)饮料瓶中有1.2升饮料,平均分给2个小朋友喝,每人可以喝多少升?
再引出例题1,让学生体会到要求“每人可以喝多少升?”这个问题,只要用总共饮料的升数÷喝饮料的人数=每人喝多少升。从而得出算式4/5÷2,在教学分数除以整数的计算方法时,我准备给学生开放的思维空间,让学生自己计算,因为数据小,部分学生可以结合生活经验得出结果,然后让学生说明计算结果的合理性,说说是怎样想的?从而得出两种不同的计算方法,对这两种方法都应给予同样的肯定。然后再出示试一试,让学生用自己喜欢的方法进行计算,在这题的计算中,学生会发现第一种计算方法的局限性,从而比较出两种计算方法的优劣。
由于本课教学内容比较简单,潘老师补充一些拓展练习,增加思维难度,让学有余力的学生也有探究的兴趣。
分数除法教案 篇3
教学目标
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学工具
多媒体课件,圆形纸片,剪刀
教学过程
一、创设情境,导入新课,
师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)
1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?
怎么列式?生:8÷4=2(个)
2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?
怎么列式?生:1÷4=
二、动手操作,探索新知
1、探索一个物体平均分,体会分数与除法的关系。
(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考
生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕
(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?
生独立思考并回答。
全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数( )来表示。所以1÷3 = ( )(个)
2、探索多个物体平均分,体会分数与除法的关系。
师:把3个蛋糕平均分给4个人,每人分得多少个?
师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。
(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。
方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个( 1/4 )张拼在一起得到(3/4 )个。
方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个( 1/4 )个,拼在一起得到( 3/4 )个。
(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3 ÷ 4 = ( )(个)(板书)
(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4
(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。
学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5 ÷ 7 = 5/7 (个) (板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3 ÷ 5 = 3/5 (根)(课件演示)
3、总结概括分数与除法之间的关系。
1÷4= (个) 3÷4= (个)
5÷7= (个) 3÷5= (个)
师:观察黑板上的这些算式,你发现了什么?
三、观察算式,概括分数与除法的关系。
(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。
(2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的'除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。
师强调:相当于
(3)师:请每个同学看着这些算式说一说分数与除法的关系。
(师板书):被除数÷除数=被除数/除数
提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?
生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。
(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b= a/b
讨论:用字母表示分数与除法的关系, b是否可以是任何数?为什么?补充板书(b≠0)师板书: a÷b= a/b ( b≠0)提问:为什么b≠0? (因为除数不能为0,所以b不能为0。)
师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)
小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。
三、练习巩固应用
1、你能很快说出这些算式的商吗?3÷8 = 5÷9= 7÷13= 4÷7= 40÷56= 12÷61=
2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?
把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
四、全课小结今天这堂课你有什么收获?还有什么问题吗?
分数除法教案 篇4
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
(略)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的`第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
分数除法教案 篇5
教学目标
使学生掌握分数除法和加、减法混合运算的运算顺序,能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。
教学重难点
能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习引新
二、教学新课
三、课堂
四、作业
1、说说下面各题的运算顺序
8÷2+9÷318÷(12-3)
2、将上题中的数据改为分数,问运算顺序怎样?
3、问:分数除法和加、减法的混合运算顺序和整数除法和加、减法的混合运算顺序是否一样?
1、出示例1
让学生自己独立完成,一人上黑板,集体说解题顺序。
2、组织练习
做“练一练”第1题
3、教学例2
出示例2
问:先算什么,再算什么?
学生口答、老师边板书边提问。
指出:这道题在把除法改为乘法后,可以应用乘法分配律使计算简便。所以我们在混合运算时,每一步计算时,都要注意观察算式的特点,能用简便算法的一般用简便算法。
4、组织练习
做“练一练”第2题
问:应用了什么定律,要怎样计算?
指出:在除法转化成乘法后,要注意有一些题可以用乘法的`运算定律使计算简便。
这节课学习了分数除法和加、减法的混合运算。谁来说一说它的运算顺序怎样?运算时要注意什么?
练习十一第1~3题的第一行,第4、5题
课后感受
本节课的重点放在简便运算上,基本上同学们还是掌握的不错。
分数除法教案 篇6
教学内容
复习分数除法的意义和计算
教材第46、第47页的内容。
教学目标
1、使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。
2、熟练掌握分数除法的计算法则,提高灵活解题的能力。
3、在整理知识体系的过程中,帮助学生掌握复习的方法。
重点难点
重点:概念和计算法则的'整理。
难点:运用所学概念,灵活解决问题。
教具学具
练习题投影片。
教学过程
一、整理本单元的知识
1、课前布置作业,学生自己整理本单元的知识点。
2、展示学生的知识结构图。
二、复习分数除法的意义和计算法则
1、回忆。
分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。
2、根据学生的汇报整理成下表。
三、课堂作业新设计
四、思维训练参考答案
分数除法教案 篇7
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的'能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
分数除法教案 篇8
教学目的:
使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。
教学过程
一、复习
1.口算下列各题。
2.把下列假分数改写成带分数。
3.把下列带分数改写成假分数。
让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。
二、新课
1.教学例5。
教师出示例5:
教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)
教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)
教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的`倒数,约分是否有错等。做完后集体订正。
2.做教科书第39页中间做一做的题目。
让学生独立完成。做完后集体订正。
3.教学例6。
(1)准备题。
①的3倍是多少?②的是多少?③的是多少?
教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)
教师让学生计算后集体订正。
(2)教学6。
教师出示例6:
教师指名说题目的条件和问题。
教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)
教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)
教师:应该设什么数为未知数x?(设这个数为未知数x。)
让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。
4.做教科书39页下面做一做题目。
让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。
三、巩固练习
1.做练习十第1题第1行的小题。
让学生装独立完成。做完后集体订正。
2.做练习十第2题的前2个小题。
让学生装独立完成,做完后集体订正。
3.做练习十第3题的第(1)~(3)题。
第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。
第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)
4.做练习十的第5题。
教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。
四、作业
练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。
分数除法教案 篇9
教学目标
使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。
教学重难点
运算顺序,简便运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习引新
二、教学新课
三、
四、作业
1、说说下面各题的'运算顺序。
8÷2+9÷318÷(12-3)
2、引入新课
1、教学例1
这道题要先算什么,再算什么?
上下练习。
引导观察计算过程,说明递等式书写的规范过程,并说明理由。
2、组织练习。
练一练1
说顺序后练习。
3、例2
说运算顺序,这里除法的两步按照计算法则要怎样算?
观察转化成乘法后的算式,想一想,是不是可以简便运算?
上下用简便算法。
问:用了什么运算定律?
4、练习;
练一练2
这里除一个数要怎样算?
用简便算法。
说说各运用了什么运算定律,是怎样算的?
说说运算顺序,要注意什么?
练习111~3、4、5
课后感受
混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。
分数除法教案 篇10
教学内容
复习分数除法的意义和计算
教材第46、第47页的内容。
教学目标
1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。
2.熟练掌握分数除法的计算法则,提高灵活解题的`能力。
3.在整理知识体系的过程中,帮助学生掌握复习的方法。
重点难点
重点:概念和计算法则的整理。
难点:运用所学概念,灵活解决问题。
教具学具
练习题投影片。
教学过程
一、整理本单元的知识
1.课前布置作业,学生自己整理本单元的知识点。
2.展示学生的知识结构图。
二、复习分数除法的意义和计算法则
1.回忆。
分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。
2.根据学生的汇报整理成下表。
三、课堂作业新设计
四、思维训练参考答案
分数除法教案 篇11
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程
一、创设情景,教学分数除法的意义
1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的`方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2.分数除以整数的计算法则是什么?(学生总结)
五、作业布置
分数除法教案 篇12
学习目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2 .掌握一个数除以分数的计算方法,并能正确进行计算。
学习重点:理解一个数除以分数的'意义和基本算理。
学习难点:运用分数除法的计算方法解决实际问题。
学习内容:
一、分一分
有4张同样的圆形纸片。
(1)每2张一份,可以分成多少份?
画一画:
列示:
(2)每1张一份,可以分成多少份?
画一画:
列示:
(3)每1/2张一份,可以分成多少份?
画一画:
列示:
(4)每1/3张一份,可以分成多少份?
画一画:
列示:
(5)每1/4张一份,可以分成多少份?
画一画:
列示:
二、画一画
1.有1根2米长的绳子。
(1)截成每段长1/3米,可以截成几段?
画一画:
列示:
(2)截成每段长2/3米,可以截成几段?
画一画:
列示:
2.3/4里面有几个1/8?
画一画:
列示:
三、填一填,想一想
在〇里填上“>”“<”或“=”。
4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4
2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8
你发现了什么?( )
四、试一试
8÷6/7 5/12÷3
你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?
( )
分数除法教案 篇13
教学目标:
使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的几分之几"的`应用题。
教学重点:
名数之间的互化。
教学难点:
名数之间的互化的实质理解。
教学课型:
新授课
教具准备:
课件
教学过程:
一,铺垫复习,导入新知
1,用分数表示下面各式的商。[课件1]
5÷6
14÷25
12÷12
18÷35
2,在括号里填上适当的数或字母。[课件2]
12÷35=()/()
()÷()=4/7
()÷()=a/b
8÷()=()/9
()÷17=7/()
1÷()=()/d
3,把5个饼分给9孩子吃,每个孩子分得多少个[课件3]
4,小新家养鸡30只,养鸭10只。养的鸡是鸭的几倍
5,填空。[课件4]
30分米=()米
180分=()小时
二,变式类推,深化理解
1,教学P91。例4:
(1)3分米是几分之几米
(2)17分是几分之几时
思考:A,这两题与复习题有什么区别?有什么相同
B,第(1)题要把分米数改写成米数应该怎么办?怎样计算
板书:3÷10=3/10(米)
C,第(2)小题是要将什么改写成什么?怎样求得
板书:17÷60=17/60(时)
P91做一做
2,教学P92例5:小新家养鹅7只,养鸭10只。养的鹅是鸭的几分之几
(1)提问:
A,用谁作标准?该怎样计算
B,与复习题对比,有哪些不同点和相同点
(2)归纳。
求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。
P9.2做一做
习前提问:说说用什么作标准数
三,加强练习,深化概念
1,P93.4
要求说说题目的思路和单位之间的进率。
2,P93.6
提问:这两个问题中的标准量相同吗?请说说标准量分别是什么
3,P93.7
四,全课小结,抽象概括
1,本节课所学的两个内容分别是什么
2,你还有问题要问吗
分数除法教案 篇14
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:
多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算,直接写出得数
2、列式,说清数量关系
小明2小时走了6km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3
1、实物投影呈现例题情景图。
理解题意,列出算式:
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的'路程)
(3)引导学生讨论交流:已知小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
(5)综合整个计算过程:
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
分数除法教案 篇15
教学目标
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学重难点
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程
一、复习
出示复习题:
1、下面各题中应该把哪个量看作单位“1”?
2、用方程解下列各题。
3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?
让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的.条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×4/5=体内水分的重量。
4、指名口头列式计算。课件出示。
二、新授
1、教学例1
根据测定,成人体内的水分约占体重的2/3,而儿童
体内的水分约占体重的4/5,小明体内有28千克水分,
他的体重是爸爸体重的7/15,小明的体重是多少千克?
爸爸的体重是多少千克?
例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?
(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。
先在小组内独立解答。
课件演示计算的算式。
(根据数量关系式:小明的体重×4/5=体内水分的重量,
反过来,体内水分的重量÷4/5=小明的体重)。
2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)
爸爸:
小明:
根据数量关系式:爸爸的体重×7/15=小明的体重
小明的体重÷7/15=爸爸的体重
①解方程:解:设爸爸的体重是χ千克。
7/15χ=35
χ=35÷7/15
χ=75
②算术解:35÷7/15=75(千克)
课件演示计算的算式。
3、用方程解应用题应注意哪些问题
首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间
的等量关系,再确定设哪个量为χ,并列出方程.
4、巩固练习:P38“做一做”课件出示:
学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、巩固应用
1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?
(先分析数量关系式,然后确定单位“1”,最后再进行解答。)
2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?
(注意引导学生发现250ml的鲜牛奶是多余条件)
3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?
(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)
4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?
独立完成后订正。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
分数除法教案 篇16
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:弄清单位1的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米X千克。x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的`人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。解:设航模小组有人。
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
教学追记:
本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。
-
我们精彩推荐分数除法教案专题,静候访问专题:分数除法教案