初中中考数学思想总结(锦集十二篇)_初中中考数学思想总结
发表时间:2018-04-02初中中考数学思想总结(锦集十二篇)。
〈1〉初中中考数学思想总结
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2)
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a) 2+(y-b) 2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px;y2=-2px; x2=2py; x2=-2py
正棱锥侧面积 S=1/2c*h'
正棱台侧面积 S=1/2(c+c')h'
弧长公式 l=a*r (a是圆心角的弧度数r >0 扇形)
〈2〉初中中考数学思想总结
1.了解计算机化人员素质测评过程中各流程的模拟;
2.理解系统试卷管理模块的功能并掌握相关的操作方法;
3.理解系统测试端模块的功能并掌握相关的操作方法;
4.理解系统档案管理模块的功能并掌握相关的操作方法;
5.理解系统统计分析模块的功能并掌握相关的操作方法。
1.浏览所有人员测评系统的所有管理项目与功能。并将其记录到实验结果中;
2.完成各人员测评系统管-理-员应进行的操作,并记录到实验结果中;
3.用方框图或表格表示出人员素质流程的流程图,记入实验结果;
4.实验完成后,回答实验思考题。
服务器采用Microsioft Windows98//XP等任何一个Windows操作系统;
学生客户端采用Windows系统并正确安装和设置相关的管理模块和测试模块;
人员素质测评流程 :由系统管-理-员通过试卷管理模块选择相关测验并生成测试帐号,审核后发送给测试组织者(主试);主试打印测试帐号列表,然后发送给被测者; 被测者使用主试提供的测试账号和密码,通过测试端登陆系统,输入个人基本信息并确认提交后,进入测评界面完成该帐号下所包含的所有测验;被测者测试结束后,系统管-理-员通过档案管理程序登陆服务器,查看集体或个人成绩,并可将指定被测者的单个测验个人报告进行打印,或将指定测验的集体数据打印出来进行分析和保存,整个人员素质测评流程基本完成,如有必要还可进行个人报告分析与修订,集体数据统计分析等。
使用主试提供的测试帐号,通过测试端输入帐号密码并确认提交,经服务器验证通过后进入个人信息登陆界面,等候主试的宣布标准化指导语。
2.添加个人信息。
个人信息是管-理-员识别和管理候选人的重要依据,请务必认真填写。
提交个人基本信息后进入测试界面,对第一次参加测评的候选人而言,往往需要先熟悉测评系统,必要的练习测验可帮助被测者缓解和调节紧张情绪,熟悉和掌握系统的操作方法,在测试的过程中请按照主试的统一指导来进行相关操作。
完成测验联系并成功提交答案后,系统自动跳转回到等待界面,如无其他事务,被测者可直接点击等待界面中的“继续”按钮,进入下一套测验的答题,如此循环,直至系统等待界面上提示“所有测验已完成,谢谢”,即可关闭测试端,结束测评。
档案管理主要分为个人基本信息管理、个人报告管理和集体数据管理两大部分,在个人报告管理时,我们按照测验名称进行分类,比如说分为16PF、基本潜能等等。(详细操作方法见《华瑞人员素质测评系统》操作说明书)
1.记录系统的所有管理项目与功能。
2.用框图或表格的形式表示出人员素质流程的流程图。
1.在人员素质测评流程中分别要用到哪些管理模块?这些模块的主要功能是什么?
2.简述每个测评流程节点的业务操作过程。
3.使用人员素质测评系统进行人员测评与管理与传统的人员选拔方式有何不同。
〈3〉初中中考数学思想总结
一、数学思想的定义和分类 数学思想是从具体的数学知识中总结出来的本质性的、规律性的认识,数学方法是解决数学问题的手段,数学思想发方法就是蕴含在数学知识中的,对学习数学的思想逻辑的一种认识。数学思想方法在数学学习中占据着非常关键的地位,学生只有认识和掌握了数学思想和方法才能融会贯通,加快数学知识的吸收速度,才能在大量的数学习题中游刃有余。初中数学中包含的数学思想方法主要有几下几种:第一,数形结合思想。数形结合既是一种数学思想也是一种常用的解决方法。可以通过图形间树立关系的研究使图形的性质变得更加深刻、精准和丰富,而赋予数量关系的解析式和抽象概念几何意义,也可以让其变得更形象直观。第二,函数与方程思想。就是将一些非函数的问题转换成函数问题,运用函数的思想方法进行解决。第三,化归与转化思想。就是将不容易解决的问题通过变换转化,使之成为容易解决的问题,实现转化的方法有整体代入法、配方法、待定系数法等等。第四,类比思想。就是由一类事物的属性可以推测会相类似的事物同样也具有该类属性的推理方法。第五,分类讨论思想。就是根据题目的要求和特点将所有要解决的问题进行分类,再按照各自的.情况采取相应的解决对策。 二、初中数学教学中渗透数学思想方法的教学策略 1.在制定教学计划时注重渗透数学思想 教学计划的制定需要包括教学目标、教学内容、具体的教学方法等等,在制定教学计划时,要注意突出对数学思想方法的教学,如要在整个初中数学教学过程的始终强调类比和化归思想,而其他的一些数学思想方法要根据实际的教学内容进行安排,要通过复习一些典型例题来强化学生已经学习过的数学思想方法,使学生的记忆更加牢固。 2.在教学基础知识时注重渗透数学思想 数学基础知识指的是数学计算法则、性质、定理、公式、概念等,这些基础知识中都蕴含着数学思想与方法,以数学定理等推导过程最为突出,老师在为学生讲解这些基础知识时,要充分挖掘出其中蕴含的数学思想方法,并详细讲解给学生听,要让学生不仅能够知其然,还能知其所以然。 3.在解题过程中注重渗透数学思想 在解题过程中注重对数学思想方法的渗透是要求老师在向学生解答数学题的时候,不能只为了求得最终的正确答案,不能直接就告诉学生结果,要引导学生对问题进行一层一层的剖析,在剖析的过程中将其中所蕴含的数学思想方法讲给学生们听,拉近学生与数学思想与方法的距离,使学生们感受到数学思想方法在解决实际问题时的重要作用,从而激发学生的学习积极性,促使学生更急主动地投入到数学知识的学习中来。掌握了一种数学思想方法就掌握了一种题型,甚至同一种数学思想方法还能解决多种数学问题,老师在讲解数学问题时,可以根据数学思想对题目进行分类,集中训练学生的数学思想能力,从而提高学生的数学实际应用能力。 4.在教学过程中注重渗透数学思想 出于数学自身的学科特点,有许多初中生感到数学知识晦涩难懂,从而丧失信心和学习的积极性,针对此种现象,老师应该引导学生运用多种数学思想和方法找到突破口,突破数学知识中的重难点,例如,对于大多数学生来说都感到比较困难的“函数与方程”就是一个重难点,运用化归转化思想方法、整体思想、类比思想等多种数学思想方法突破这一重难点,使问题得到解决。只有在日常的教学活动中有意识地强调运用不同的数学思想和方法,才能加深学生对各种数学思想方法的理解和记忆,才能使学生养成运用数学思想方法解决实际问题的习惯,从而提高学生的应用能力。 5.提炼“方法”,完善“思想” 数学思想与方法蕴含在初中数学知识的方方面面,同一个数学思想方法可以解决不同的数学问题,而同一个数学问题也可能利用多种数学思想方法而得以解决,因此老师要适时适当地对这些数学思想和方法进行提炼和概况,以帮助学生明晰思路,更好的掌握和利用这些数学思想方法。同时,老师还要注重培养学生揣摩概况、自我提炼数学思想方法的意识和能力,通过自己的自主学习体会到挖掘与应用数学思想与方法的乐趣,从而增强学生对数学学习的好感,减轻学生的心理压力,只有这样才能真正将数学思想与方法的教学落实到实处。 三、小结 传统的初中数学教学中那种只重视知识的灌输和习题训练,不重视对学生数学思想方法的培养的教学模式是不符合教育要求,不利于学生真正提高数学水平的。数学思想方法在数学体系中占据非常重要的地位,对于学生的学习起着不可替代作用,老师只有将数学思想方法渗漏在数学教学的始终,才能真正帮助学生更好地理解和掌握数学知识,才能真正有效地提高教学质量。 初中数学教学中数学思想和方法训练探析 摘要:数学思想和数学方法是一对孪生姊妹,数学方法中往往体现了一定的数学思想,数学思想对数学方法具有一定的指导意义。新课程标准要求我们在初中数学教学中注重学生数学思想和数学方法的训练和培养。 关键词:初中数学;数学思想;数学方法 新的初中数学课程标准中把数学思想和数学方法列为学生必须掌握的基础知识的重要组成部分,重视学生数学思想和数学方法的培养不仅是新课标的要求,也是在教育实践中实施创新教育的重要体现。数学思想就是人们对数学知识、数学方法本质的认识,也是人们对数学基本规律的理性认识。数学方法是我们解决数学问题时的根本程序,是数学思想在实践中的具体表现形式。数学思想是整个数学学科的灵魂,数学方法是数学学科的具体行为。我们在运用数学方法解决具体问题的过程也就是人们的感性认识不断积累的过程,这种量的积累最终结果是上升为数学思想。在初中数学教学中它们是同等重要的,我们应特别注重学生在数学思想和数学方法方面的训练。 一、注重数学思想和数学方法训练的教学策略 在初中数学教学中,应该特别注重学生数学思想和数学方法的训练,重点应该牢牢把握以下两个方面的策略。 (一)结合新课标的具体要求,落实层次教学法 新的课程标准对初中数学中渗透的数学思想和方法有了解、理解、会应用三个层次的要求,需要学生了解的数学思想主要有函数思想、化归的思想、数形结合的思想、分类思想、类比思想等。我们在教学中,就是要把这些抽象的思想通过具体的数学方法体现出来,把复杂的问题简单化。比如,在初中数学中化归思想是渗透在学习过程中一个普遍的数学思想,七年级数学中“一元一次方程简介”这一章,为体现这一思想在解方程中具有指导作用,每一步都点明了解方程的目的,各个步骤的目的就是要使一元一次方程变形为x=a的形式,把方程中的未知转化为已知。在课程标准中要求了解的数学方法有分类法和反证法,要求理解或者会应用的数学方法有待定系数法、图像法、降次法、配方法、消元法、换元法等。在具体教学中,教师要认真把握好这三个层次,不能超出新课标中对学生的要求,不能将本来需要学生了解的内容上升到理解或者会用的层次,打击学生的积极性。 (二)通过数学方法认识数学思想,充分发挥数学思想对数学方法的`指导 数学方法是比较具体的,是具体数学思想得以实施的技术手段,数学思想是比较抽象的,属于数学观念的范畴。因此,在教学过程中,要通过加强学生对数学方法的掌握和运用来了解数学思想,在了解了数学思想以后,在处理类似数学问题的时候,可以运用数学思想对我们的求解过程进行指导。例如,我们在向学生讲授化归思想的时候,首先要通过一系列的习题,让学生对化归思想所体现出来的从未知到已知、从一般到特殊、从局部到整体的转化中了解和认识这一数学思想,然后,纵观初中数学的各章节内容,大多都体现了这一思想,因此,在处理有关数学问题的时候,要运用这一思想对求解的过程进行指导。让学生通过对数学方法的学习逐步领略数学思想的内涵,同时,用数学思想指导和深化数学方法的运用。 二、遵循规律,把握原则,实施创新教育 培养学生的能力是数学教育的重要目标之一,尤其是通过数学教育培养学生的创新能力。数学学习可以发展学生的理性思维,这也是新课标的重要要求。为此,我们应该把握好以下几方面的原则,切实培养学生的思维能力和创新能力。一是渗透数学方法的同时了解数学思想。初中学生的数学知识相对比较匮乏,抽象思维能力较差,不能够把数学思想和数学方法作为一门独立的课程,只能以数学知识为载体,把数学思想和数学方法渗透到具体教学中。二是通过数学方法的训练进一步理解数学思想。数学思想的内容很丰富,方法也是多样化的,必须分层次进行渗透和教学活动,这就需要教师全面地钻研教材,挖掘教材中进行数学思想、方法渗透的重要因素,由浅入深、由易到难分层次地贯彻数学思想和数学方法。三是在掌握数学方法的基础上运用数学思想。在数学的学习过程中,我们都是通过课堂听讲、课后复习、习题训练等几个环节,才能真正掌握和巩固数学知识。在掌握数学思想和数学方法的时候,也要遵循循序渐进的规律,教师要有意识地让学生进行有针对性的训练,进而掌握数学思想和数学方法,培养学生自觉运用数学思想和数学方法的观念,逐步建立起自己的数学思想和数学方法系统。四是在提炼数学方法的过程中完善数学思想。在教学过程中,要改变传统教学模式下的“照本宣科”,要创新教学方法,在教学过程中要对课堂内容进行精心的组织,特别是要在涉及数学思想和数学方法的时候,有意识地进行及时的总结,引导学生进行探究性学习的同时,总结学习的过程,梳理知识体系,并能够准确地提炼出数学思想和数学方法。在教学中,也可以引入一些经典的故事,让学生从中提炼数学思想和数学方法。比如,可以引导学生从鲁班造锯的故事中提炼出数学中的类比思想,让学生从曹冲称象的故事中提炼出转化思想,也就是化归的思想,从司马光砸缸的故事中提炼出逆向思维的思想。通过这些故事,不仅可以活跃课堂气氛,增加课堂感染力,提高学生们的学习兴趣,更有利于培养学生从具体事例中提炼数学思想和数学方法的能力。 数学思想是数学的灵魂,数学方法是解决具体问题的钥匙。学习数学的根本目的不是能够在考试中获得多高的分数,而是要通过数学教学活动,让学生具备一定的数学素质。其中学生对数学方法和数学思想的掌握和运用情况就是一个学生数学素质的具体体现。因此,在新课标下,我们应该更加注重学生在数学思想和数学方法方面的训练,以切实提高学生的综合能力。 九年级第一学期数学期中考试测评已结束,从九年级八个班的整体成绩来看,成绩不容乐观.但比较上学期而言,成绩还是有所进步的。下面我代表九年级数学备课组对这一次期中考试测评做统一分析、总结如下: 一、试卷特点 本次数学期中考试检测试卷主要以人教版九年级数学(上)教材的第问题探究和应用数学知识解决实际问题的能力,淡化与减少机械记忆性的内容,重视对数学思想方法的考查和基本运算的考查,同时渗透了数学思想的考察和应用。按照新课标的总体要求,试卷整体难度属于中等程度,体现了“双基”考查的基本要求。 二、试卷内容分析 本次试卷主要考查了人教版九年级数学(上)教材的第填空题、解答题为主,全卷以110分制命题。时间100分钟。共分三个大题,选择题42分,填空题12分,解答题56分。 三:学生成绩分析 下面是初三整个年级的成绩情况: 整个年级一共433人参加考试,数学平均分为50.4分,优秀率14.3﹪, 良好率20.8﹪,及格率37﹪,低分率43.4﹪,101分以上有27人,共40颗星,低分人数达到188人,因此,整个成绩还是不容乐观的。 四、各大题答题情况分析 第及14题。第1小题属于一个概念判断题,但相当一部分学生没有选对,这说明了学生对数学概念把握不准,基础不扎实,对课本知识生疏,或不能熟练运用,并且可以看出相当一部分学生做题不认真,而一些后进生更是胡乱选择,造成选择题的正确率偏低。 2、填空题:一共4小题。填空题的难度不大,除17小题外,都是一些基础知识题。这一大题的正确率不是很高,也是出现一部分学生乱填写的现象。第17小题考察的是对一元二次方程两根之和及两根之积的活用,因此可以看出学生平时学习过程中,学习方法过死,灵活解决和处理问题的能力不足。尤其表现在对课本上的一些变式问题缺乏分析和解决问题的能力,死搬硬套,照猫画虎,因而得分率较低。 20道解方程的完成率较高,但得分率却不是很高,主要原因出于学生对算法不太掌握,稍微出现点变形就不知该如何下手,缺乏良好的思考和解题的习惯,解题思路混乱,涂改现象严重,答题结束不能认真检查。而21小题由于是分步完成,所以有一部分学生答题不够完整,说明思考的严密性不高。22小题是这次考试完成效果最差的一道题,对于应用配方法将关于X的二次三项式2X2-4X+6变形这一步直接先化成了X2-2X+3,把整式与等式的理解混为一起,进行直接约分处理,导致了整道题失分。23小题学生还是完成得较好的,基本上掌握了列式解应用题,但还是缺乏归纳和分析的能力,不能正确运用整体的数学思想解决问题。而最后一道画图求面积的题,这道题出得很有技巧,也让学生充分发挥了自已的聪明才智,精彩的地方在于在所有考卷中能找到四种不同的解法,体现了不同的知识点,提高了学生一题多解的能力。 浅谈初中数学中数形思想转化 ——以《反比例函数图象和性质》为例 邵东县周斓初中数学名师工作室 反比例函数的图象和性质,蕴含着丰富的数学思想。我认为在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。我在教学时重点从以下三个方面来谈。 一、对数形结合的解读 第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再推导出“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的相互转化过程,这是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。 第二,在“列表取值时,变量为何不能取零”、“反比例函数的图象为何与坐标轴不会有相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就要求“回归”解析式,再认识,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。于是,我在教学中,同样关注了对反比例函数解析式的分析。 第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了相关习题,帮助学生理解并灵活运用反比例函数的性质,初步把握数形结合思想和转化意识,目的是为学生提供一个体会“数形结合”、以及应用“数形结合”来分析问题,解决问题的平台,使学生经历利用“函数图形”形象直观的来认识、解决与函数有关问题的过程。 二、对教学效果的反馈 在实际授课过程中,教学环节的展开是顺畅、自然的,如“观察探究,形成新知”环节,学生能够在教师的引导下,说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,完成列表、描点、画出反比例函数图象的过程,也可以通过观察所画出的反比例函数的图象,得出其图象的“特征”和函数的“性质”。 由于学生刚刚接触反比例函数的图象,图象的外在形式(双曲线)与一次函数的图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,这致使学生在课后“目标检测”时,对部分问题的解决出现偏差。不可忽视本节课学习的'一个重要的方法,就是采用“类比”。在教学过程中,我积极引导学生采用“类比一次函数学习的方法”,积极调动学生“ 推理”的因素,以确保学习知识的“正迁移”效应。事实上,这样也会带来另一些负影响,学生往往对属于一次函数和反比例函数“共性”的结论印象比较深刻,而对于新的反比例函数“个性”的结论,在理解上反而会受到一些干扰。? 三、对教学设计的改进 1、必须强调“回归”反比例函数解析式。在这节课的教学中,我通过描点画出反比例函数的图像,使反比例函数解析式表示的函数关系直观化,便于学生通过观察,得出函数图象的“特征”及函数的“性质”,但由于这样得出的结论,对“图像”的依赖性过强,甚至形成了“解析式--图象--性质”的思维定势,而忽视了数学形式化的意义,也有悖于“图形直观”在研究函数问题中的辅助性作用,也就是说,我们不能将对函数的认识,完全等价于对其图形的认识,应该把“图像”与“解析式”结合起来,以利于更好地探究两个变量之间变化的规律性。 因此,本课的教学设计应注重分析“反比例函数图象的位置特征”,积极引导学生观察和分析“反比例函数的增减变化趋势”,也不可忽视对反比例函数解析式的剖析。这种从“数”的方面的再认识,肯定会使学生对反比例函数图象和性质的认识更加科学精确。 2、必须关注“类比”中的异同点。反比例函数图象和性质的学习,可以模仿类比一次函数的研究方法进行探究,从而体现了函数学习的一般规律和方法。在这课的教学设计时,我尊重教材的编写意图,以课本例题为例、以课后练习训练为主,适当增加一些习题,其中解题思路是通过“描点——作图——观察”图象,到分析图象“特征”,再到确定函数中变量x、y 之间的“变化规律”,从而得出函数的“特性”,这一探究的过程和方法,是学习初等函数时不可或缺的。事实上,初中学段后续研究的二次函数,高中学段研究的指数函数、对数函数、幂函数等,都可以采用与之类似的“探究模式”。可见,这种方法很重要,对于学生领悟和理解反比例函数、建立认识反比例函数有着重要的意义。我们在运用“类比”的方法,经历探究反比例函数的过程中,还应注意“趋同求异”,关注反比例函数与一次函数之间的差异。? 综上所述,在学习一次函数的时候,学生已经历过观察、分析图象的特征,抽象、概括函数性质的过程,对探究函数性质所用的探究方法也有一定的了解。通过类比,结合反比例函数的图象的性质,从使用的方法上不会存在障碍,但由于反比例函数图象相对于一次函数图象,其形态丰富、结构复杂,具有自身的特殊性,因此,对反比例函数性质的深入理解和掌握,对性质探究中的数学思想的体会和运用,还有一定的困难。教学中,必须强调说明由“数”到“形”、由“形”到“数”的转化关系,以“数”与“形”的转化为途径,展开探究活动。在准确画出反比例函数的图象的同时,理解反比例函数的性质,并能灵活应用,解决一些实际问题。 关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如: 其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式 tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) sin3a=sin(2a+a)=sin2acosa+cos2asina Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) =4sina[(√3/2)2-sin2a] =4sina(sin60°+sina)(sin60°-sina) =4sina__2sin[(60+a)/2]cos[(60°-a)/2]__2sin[(60°-a)/2]cos[(60°-a)/2] =4cosa[cos2a-(√3/2)2] =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa__2cos[(a+30°)/2]cos[(a-30°)/2]__{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 sinα=2tan(α/2)/[1+tan^(α/2)] cosα=[1-tan^(α/2)]/1+tan^(α/2)] tanα=2tan(α/2)/[1-tan^(α/2)] 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC (9)sinα+sin(α+2π/n)+sin(α+2π__2/n)+sin(α+2π__3/n)+……+sin[α+2π__(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π__2/n)+cos(α+2π__3/n)+……+cos[α+2π__(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的。函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标。 函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线。这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;对于一些从形式上看是非函数的问题,经过适当的数学变换或构造,使这一非函数的问题转化为函数的形式,并运用函数的有关概念和性质来处理这一问题,进而使原数学问题得到顺利地解决。尤其是一些方程和不等式方面的问题,可通过构造函数很好的处理。 方程思想就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。尤其是对于一些从形式上看是非方程的问题,经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到解决。 正棱锥是棱锥的一种,具备着所有棱锥的性质和定理。 正棱锥 如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。 正棱锥的性质 (1)正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高); (2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形; (3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等; (4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch‘。 特别地,侧棱与底面边长相等的正三棱锥叫做正四面体。 当面临的数学问题不能以统一的形式解决时,可以把涉及的范围分解为若干个分别研究问题局部的解。然后通过组合各局部的解而得到原问题的解,这种思想就是分解组合思想,其方法称为分类讨论法。 分解组合,是重要的数学思想之一。对于复杂的计算题、证明题等,运用分解组合的思想方法去处理,可以帮助学生进行全面严谨的思考和分析,从而获得合理有效的解题途径。例如,等腰三角形两边长分别是4和5,求这个等腰三角形的周长。解决本题首先分类讨论:①若4为底,则5为腰,三边长分别为4,5,5,可以构成三角形,此时周长为14;②若5为底,则4为腰,三边长分别为5,4,4,可以构成三角形,此时周长为13。 顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。 中位线 中位线概念 (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。 (2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。 注意: (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。 (2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。 (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。 初三数学学习要做好课前自学准备 课前自学。这是上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。 同学们,初中数学的学习要做好课前自学工作,请大家一定要注意了。接下来会有更全的初中数学学习方法供大家学习。想要了解更多初中数学信息就关注。 初中数学解题方法之常用的公式 下面是对数学常用的公式的讲解,同学们认真学习哦。 对于常用的公式 如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。 总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。 初中数学解题方法之学会画图 数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。 学会画图 画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。 画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。 初中数学解题方法之审题 对于一道具体的习题,解题时最重要的环节是审题。 审题 认真、仔细地审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。” 所以,在实际解题时,应特别注意,审题要认真、仔细。 初中数学解题方法之增加习题的难度 人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。 增加习题的难度 应先易后难,逐步增加习题的难度。一个人的能力也是通过锻炼逐步增长起来的。若简单的.问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。 其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。 因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。 初中数学解题方法之归纳总结 下面是对数学解题归纳总结的讲解,希望给同学们的学习很好的帮助。 要学会归纳总结。 在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。 以上对数学归纳总结知识的内容讲解,希望同学们都能很好的掌握,相信同学们会学习的很好。〈4〉初中中考数学思想总结
〈5〉初中中考数学思想总结
〈6〉初中中考数学思想总结
〈7〉初中中考数学思想总结
●检讨书大全jT56W.CoM顶流精选:
〈8〉初中中考数学思想总结
〈9〉初中中考数学思想总结
〈10〉初中中考数学思想总结
〈11〉初中中考数学思想总结
〈12〉初中中考数学思想总结
想了解更多初中中考数学思想总结的资讯,请访问:初中中考数学思想总结