学生检讨书|一次函数的应用课件(范文16篇)_一次函数的应用课件
发表时间:2019-05-01一次函数的应用课件(范文16篇)。
✧ 一次函数的应用课件 ✧
一次函数是数学中最基础的函数之一,也是中学数学中最早接触的函数之一。学习一次函数的概念和性质对于理解其他更复杂的函数以及应用数学非常重要。下面是一篇关于数学一次函数教案的主题范文,旨在帮助学生更好地理解和应用一次函数。
主题:一次函数的定义、性质及应用
范文:
一、引言
在我们平常的生活中,许多的数学问题都能够通过使用一次函数来进行解决。一次函数是一种非常常见且重要的数学函数,它可以用简单的线性关系来描述数值之间的关系。本节课我们将学习一次函数的定义、性质以及如何将其应用到实际问题中。
二、一次函数的定义与性质
1. 一次函数的定义
一次函数是指具有形如 y = ax + b 的函数,其中a和b是常数,且a不等于0。在一次函数中,自变量(x)的最高次数为1,因此也称为线性函数。
2. 一次函数的性质
(1)一次函数的图像是一条直线,且直线的斜率等于函数中a的系数,斜率可以表示函数的变化率。
(2)当a大于0时,函数是递增的,当a小于0时,函数是递减的。
(3)如果a等于0,那么函数将变成一个常数函数,即无论自变量的值如何变化,函数的值都保持不变。
(4)一次函数的x轴上的截距为-b/a,即y=0时的解。
三、一次函数的应用
1. 线性方程
一次函数可以用来解决线性方程。例如,一个商店出售T恤衫,每件T恤衫售价为20元,可以用一次函数 y = 20x 来表示其中x表示购买的件数,y表示总价。这样当我们知道购买件数时,可以通过计算得到总价。
2. 成本、收益、利润
一次函数还可以用来描述成本、收益和利润之间的关系。如果我们知道某个企业生产一个产品的成本为10元每件,售价为30元每件,那么利润可以用一次函数 y = 20x - 10 来表示,其中x表示销售数量,y表示利润。
3. 速度和时间
一次函数还可以用来描述速度和时间之间的关系。例如,一辆汽车以每小时60公里的速度行驶,那么行驶时间t和行驶距离d之间可以表示为一次函数 d = 60t。
四、综合练习
1. 已知一次函数过点(2, 4)和斜率为3,求函数的解析式。
解:设函数的解析式为y = ax + b,根据过点(2, 4)可以得到 4 = 2a + b。根据斜率为3可以得到a = 3。将a的值代入第一个方程中解得b = -2。因此,函数的解析式为y = 3x - 2。
2. 一辆汽车以每小时100公里的速度匀速行驶,从A地到B地共需5小时。求AB两地的距离。
解:设AB两地的距离为d,根据速度和时间的关系可得 d = 100 × 5 = 500公里。因此,AB两地的距离为500公里。
五、总结
本节课我们学习了一次函数的定义、性质以及如何将其应用到实际问题中。一次函数是数学中最基础的函数之一,它的图像是一条直线,斜率表示了函数的变化率。通过本节课的学习,希望大家能够更好地理解和应用一次函数,并能够将其运用到实际生活中解决问题。
✧ 一次函数的应用课件 ✧
标题: 探索数学一次函数的教学方法——基于实践和应用
引言:
数学是一门抽象而又实用的学科,而数学中的一次函数是数学中最基本且广泛应用的函数之一。了解和掌握一次函数的概念、性质和应用,对学生的数学素养和日常生活中的问题解决能力具有重要意义。本教案旨在通过以实践和应用为导向的教学方式,帮助学生更深入地理解和掌握一次函数,并在实际问题中应用得当。
一、教学目标:
1. 理解一次函数的概念、定义和基本性质;
2. 能够正确地利用一次函数建立模型,解决实际问题;
3. 能够利用一次函数的性质进行函数的应用拓展。
二、教学准备:
1. 教师准备PPT,提供一次函数的定义、性质和应用案例;
2. 准备足够数量的练习题或实际问题;
3. 准备计算机和互联网,以便学生参与教学活动。
三、教学过程:
步骤一:引入概念
1.通过PPT展示一次函数的定义和基本形式:y=ax+b,解释其中a和b的含义。
2.通过实际案例展示一次函数在现实生活中的应用,如汽车的行驶距离与时间的关系等。
步骤二:探索一次函数的性质
1.学生分组进行小组讨论,并总结一次函数的性质,包括函数的单调性、零点、图像和解的唯一性等。
2.请学生利用互联网资源,查找一次函数性质的相关实例,并与小组分享。
步骤三:应用案例分析
1.教师提供一些实际问题,涉及一次函数的应用,如购物满减、公式推导、简单经济模型等。
2.学生个别或小组探讨和解决这些问题,并从不同的角度解释答案的意义。
3.学生展示解题过程和结果,并相互评价。
步骤四:拓展应用
1.教师引导学生对一次函数的应用进行拓展,如勾股定理、简单抛物线模型等。
2.学生独立或小组进行相关拓展应用的研究,并展示自己的发现和结论。
3.学生评价他人的拓展应用,并相互交流心得和体会。
四、教学拓展:
1.教师鼓励学生自主学习,利用互联网资源和相关教材,深入了解一次函数的不同应用领域。
2.鼓励学生进行课外参观和实践活动,如调查房价与面积的关系等。
五、教学评价:
1. 根据学生在解决实际问题中的应用能力进行评价;
2. 通过小组和个别展示、讨论和评价,评估学生对于一次函数概念和性质的理解和掌握情况;
3. 结合课堂练习和作业,评价学生对于一次函数应用拓展的能力。
结语:
通过实践和应用为导向的教学方式,学生能更深入地理解一次函数的概念、性质和应用,同时也提高了学生的数学素养和实际问题解决能力。教师还应鼓励学生在自主学习和课外实践中,进一步拓展和应用一次函数理论,培养学生的创新思维和问题解决能力。
✧ 一次函数的应用课件 ✧
《一次函数的图象与性质》评课稿
2014年11月5日,在本校录播教室听了刘老师的一节八年级数学课,本课所使用的是北师大版八年级数学上册第四章第三节《一次函数的图象与性质》教材内容。
在教书生涯中,我也多次经历了这一节内容的备课、上课、说课等一系列的活动,显然一次函数的图象与性质是一次函数的概念的后续课的内容,所以在此对照自己的教学实践,从以下几个方面谈点对刘老师这个课例的看法:
刘老师的这个课例,特点是设计的思路符合学生的认知特点,注重师生的双向互动,充分发挥学生的主体作用,让学生在做中发现规律,通过学生自主学习,小组合作交流,亲自动手实践,教师适时引导点拨,归纳出一次函数的图象和性质,并通过课后练习进行巩固,符合学生的认知规律,使课堂知识得到及时巩固。
对照教学目标,本节课的优点:
1、重视学生活动,关注个性发展,在本节教学中,根据课堂设计的活动,充分利用多媒体几何画板的强大功能、自己观察、进行自主学习和合作交流,教师适时进行点拨,生生互动、师生互动,极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松偷快进行心灵的沟通与精神的交融。
2、注重知识形成的探索过程。刘老师并没有将性质的结论直接告诉学生,而是不断的让学生养成自我探索的过程中发现新知。这一节课从学生己有的正比例函数的图像和性质出发,通过设计在同一坐标系内作出正比例函数和一次函数的图像,类比正比例函数的性质,探究一次函数的性质。在整堂课的教学活动中充分体现学生的主体性。刘老师向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。
3、注重学生的自我反思。学生学习的收获不仅有基本知识与技能,还有过程与方法,以及情感、态度和价值观。课堂小结的设计,意在使学生学会归纳和反思,培养学生的归纳能力和自我反思的意识。
本堂课的不足之处:
1、本节课课堂上留给学生做练习的时间有些少。需要压缩前几个活动时间,保证足够的做题时间。
2、系数K对两条直线位置关系的影响挖掘不够。应进行补充:K相等时,两条直线平行,K不相等时两条直线相交。
3、板书设计不够规范合理,知识点的呈现缺乏条理性和准确性。总之,刘老师的这节课优点很多,反映出他作为一线的年轻教师,善于钻研教材、研究学生,通过各种方式调动学生的积极性和主动性,在整堂课的教学活动中充分体现学生的主体地位和教师的主导作用。
✧ 一次函数的应用课件 ✧
第7课时一次函数
1结合具体情况理解一阶函数的含义,根据实际问题中的定量关系写出一阶函数的解析公式
2能分辨正比例函数与一阶函数的区别和联系
3.使用不确定系数法求一次函数解析公式的初步经验
学习过程:
活动一新课导入
问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?
(1)有人发现,在20~25 ℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c的值约是t的7倍与35的差.
(2)一种计算成年人标准体重g(kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是g的值.
(3)某城市的市内**的月收费额y(元)包括月租费22元和拨打**x min的计时费(按0.1元/ min收取).
(4)把一个长10 cm、宽5 cm的长方形的长减少x cm,宽不变,长方形的面积y(cm2)随x的值而变化.
活动二新知构建
问题2上数解析表达式的共同特征是什么?
一次函数的定义
2.例题讲解
(补充) 下列函数中是一次函数的有哪些?并说出k和b的值.
(补充)已知y+2与x+3成正比例.
(1)试说明y是x的一次函数;
(2)如果x=3时y=5,x=2时y=2,求y与x的函数关系式.
(补充)已知关于x的函数y=(k+2)x+k2-4,
(1)当k满足什么条件时,它是一次函数?
(2)当k满足什么条件时,它是正比例函数?
1. 下列函数中,哪些是一次函数?哪些又是正比例函数?
2. 一次函数,当当求
2.已知方程3x-2y=1,把它化成y=kx+b的形式是;
这时k=,b=;
当x=-2,y=,当y=0时,x=
第8课时一次函数
学习目标:
1.理解函数y=kx+b(k≠0)与函数y=kx(k≠0)图象之间的关系,
2能用两个适当的点来画一阶函数的图像,
三。掌握k的正负对图象变化趋势和函数性质的影响
学习过程:
活动一新知构建
1.一次函数的图象
(教材例2)在同一坐标系中画出函数y=-6x与y=-6x+5的图象.
上面两个功能的图象之间有什么异同? 为什么?
这三个函数的图象形状为,倾斜度为;
函数y=-6x的图象经过(0,0);
函数y=-6x+5的图象与y轴交于点,即它可以看作是由直线y=-6x向平移个单位长度而得到的;
函数y=-6x-5的图象与y轴交于点,即它可以看作是由直线y=-6x向平移个单位长度而得到的.
结合上述结论,一次函数y=kx+b(k≠0)的图象是什么形状?它与直线y=kx(k≠0)有何关系?
练习:在同一坐标系中绘制函数y=2x-1和y=-0.5x+1的图像
活动二**一次函数的性质
例2在同一坐标系中绘制下列函数的图像
(1)y=x+1; (2)y=2x-1; (3)y=-x+1; (4)y=-2x-1.
观察函数图象思考并解决问题:
(1)直线y=x+1经过象限;y随x的增大而,函数的图象从左到右;
(2)直线y=2x-1经过象限;y随x的增大而,函数的图象从左到右;
(3)直线y=-x+1经过象限;y随x的增大而,函数的图象从左到右;
(4)直线y=-2x-1经过象限;y随x的增大而,函数的图象从左到右.
总结:一次函数y=kx+b(k≠0)中,k的正负对函数图象有什么影响?
(补充)已知一次函数y=(2m-1)x-(n+3).
(1)当m为何值时,y的值随x的增大而增大;
(2)当n为何值时,此一次函数也是正比例函数;
(3)若m=1,n=2,写出函数解析式,求函数图象与x轴和y轴的交点坐标;画出图象,根据图象求x取什么值时,y>0?
1.正比例函数y=kx(k≠0)的图象是经过两点(0,0),(1,k)的一条直线,一次函数y=kx+b(k≠0)的图象是经过两点(0,b),(-,0)的一条直线,我们把这条直线称为直线y=kx+b. 具体性质如下表.
2k,b对线性函数象的影响
(1)当k>0时,y随x的增大而增大 ,当k<0时,y随x的增大而减小.
(2)k决定着一次函数图象的倾斜程度,|k|越大,其图象与x轴的夹角就越大.
(3)b决定着直线与y轴的交点位置,当b大于0时,交点在y轴正半轴上;当b小于0时,交点在y轴负半轴上.
(4)直线y=kx+b可以看成是由直线y=kx平移|b|个单位长度得到的(当b>0时,向上平移;当b<0时,向下平移).
3.一次函数的图象的画法.
由于一个线性函数的图象是一条直线,因此只有确定两点才能画出它。一般选择x轴与y轴直线的交点
1.下列一次函数中y随x值的增大而减小的是()
a、 y=2x+1 b.y=3-4x
c.y=x+2 d.y=(5-2)x
2.y=3x与y=3x-3的图象在同一坐标系中的位置关系是()
a.相交b.互相垂直
c.平行d.无法确定
三。将直线y=x+3按单位长度平移,即可得到直线y=x-2
4.若一次函数y=(1-2m)x+3的图象经过a(x1,y1),b(x2,y2)两点.当x1y2,则m的取值范围是
5线与轴交点的坐标为与轴线相交的坐标
图像经过象限,随的增大而
第9课时待定系数法求解析式
学习目标:
1学会用待定系数法确定一阶函数的解析公式
2了解确定一次函数解析公式的两个条件和确定正比例函数解析公式的一个条件
3.掌握一次函数的简单应用.
学习过程:
活动一新知引入
已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂质量是4千克的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.
结论:(1)为了找到y = kx + b的函数的解析公式,需要几个条件来获得k和b?的值。
(2) 用待定系数法确定函数解析公式的一般步骤是什么?
活动二例题解析
(补充)已知一次函数y=kx+b,当x=5时,y=4,当x=-2时,y=-3,求这个一次函数的解析式.
(教材例4)已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.
(补充)已知一次函数的图象如图所示,写出函数的解析式.
活动3解决与一阶函数相关的实际问题
(教材例5)“**1号”玉米种子的**为5元∕kg,如果一次购买2 kg以上的种子,超过2 kg部分的种子**打8折.
(1)填写下表:
(2)写出付款金额关于购买量的函数解析式,并画出函数图象.
1给定一阶函数y=kx+b,当x=-4,y=9,x=6,y=-1时,则该函数的解析公式为
2.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y轴的交点是.
三。如图所示,找到ab线对应的函数解析公式
4.如图所示,折线abc是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系的图象.根据图象,写出该函数的解析式.
第十课一阶函数、方程与不等式
学习目标:
1理解和掌握一次函数、一次方程和一元不等式之间的关系
2.能初步运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.
三。了解二元线性方程组的解是两条直线的交点坐标,并能用图象法求出二元线性方程组的解
学习过程:
活动一新课引入
问题1 (1)解方程2x-4=0.
2)当自变量x为何值时,函数y=2x-4的值为0?
(3)从上述两个问题中,你能发现一次函数与一元一次方程的关系吗?
(4)画出函数y=2x-4的图象,并确定它与x轴的交点坐标.
问题2 (1)解不等式:2x-4>0
2)当自变量x为何值时,函数y=2x-4的值大于0?
(3)观察函数y=2x-4 的图象,回答问题:
当x时,y=2x-4 >0,
当x时,y=2x-4 < 0.
1.**一次函数与方程的关系
为了测试小明的数学学习情况,老师编了四道考题
问题(1):解方程2x+1=0.
问题(2):当x为何值时,函数y=2x+1的值为0?
问题(3):画出函数y=2x+1的图象,并确定它与x轴的交点坐标.
问题(4):第(1)(2)个问题有何关系?(1)(3)呢?
2.(1)请填写**,使得以下的一元一次方程问题与一次函数问题是同一问题.
(2)根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解.
✧ 一次函数的应用课件 ✧
一、知识要点
y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.
2、一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠,特别地,当b=0时,称y是x的正比例函数.
说明: (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.
(中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.
(3)当b=0,k≠0时,y=b仍是一次函数.
(4)当b=0,k=0时,它不是一次函数.
由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.
由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(,直线与x轴的`交点(- ,,(即可.
的性质(正比例函数的性质略)
(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
(,|k|越小,直线与x轴相交的锐角度数越小(直线缓);
(负决定直线与y轴交点的位置;
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
5、确定正比例函数及一次函数表达式的条件
(中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.
(中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
6、待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.
7、用待定系数法确定一次函数表达式的一般步骤
(1)设函数表达式为y=kx+b;
(;
(3)求出k与b的值,得到函数表达式.
8、本章思想方法
(变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。
(研究、解决问题的一种思想方法。
二、典型例题
例x +(m-4)是一次函数?
例与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.
例某物体从上午是时间t(时)的函数:M=t,则上午10时此物体的温度为 __ ℃.
例
(1)y是x的一次函数吗?请说明理由;在什么条件下,y是x的正比例函数?
(若正比例函数y=(x的图象经过点A(x和点B(x,当x.
✧ 一次函数的应用课件 ✧
(3)b出发后小时与a相遇.
(4)若b的自行车不发生故障,保持出发时的速度前进,则小时与a相遇.
相遇点离b的出发点千米,在图中标出这个相遇点c.
活动三:综合运用,体验数形结合
小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距甲地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距甲地的距离与时间的关系如图中线段ab所示.
(1) 小李到了a地后,几个小时后又到了b地;小张的自行车速度是公里/小时
(2) 小张出发多少小时?离小李15公里?
(3) 如果小李想在休息时间见小张,他的出发时间x应该在多大范围内?(直接写出答案)
检测反馈:
周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1) 了解小明骑自行车的速度和在某个地方玩的时间;
(2) 小明离家多少小时后,他妈妈才赶上他?此时离家多远?
(3) 如果妈妈比小明早10分钟到达b,请询问从家到b的距离
✧ 一次函数的应用课件 ✧
优点
1、教学目的明确,突出重点、基本完成教学任务。作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。选择贴近生活的中考题,并采用了灵活的形式组织教学,使整 个教学过程充满活力。
4、学生自主且自信。自主学习是建立在学生一定的知识基础上的'较高层次的学习活动,更是一种学习态度的体现。整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议
1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?
✧ 一次函数的应用课件 ✧
(一)教材的地位和作用
从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标
1.知识目标
(1)理解一次函数和正比例函数的概念,以及它们之间的关系。
(2)能根据所给条件写出简单的一次函数表达式。
2.能力目标
(1)经历一般规律的探索过程、发展学生的抽象思维能力。
(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
3.情感目标
(1)通过函数与变量之间的关系的`联系,一次函数与一次方程的联系,发展学生的数学思维。
(2)经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
(三)教材重点、难点
1、重点
(1)一次函数、正比例函数的概念及关系。
(2)根据具体情境所给的信息确定一次函数的表达式
2、难点
根据具体情境所给的信息确定一次函数的表达式
接下来我来谈谈第二方面:教法与学法:
在本节课的教学中我准备采用的教学方法主要是指导——自学方式。根据学生的理解能力和生理特征,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面要创造条件和机会,让学生发表意见,发挥学生的主动性。通过本节课的学习,教给学生从特殊到一般的认知规律去发现问题的解决方法,培养学生独立思考的能力和解决问题的能力。
✧ 一次函数的应用课件 ✧
一、内容和内容解析;
1、内容:人教版八上第十四章一次函数14.22(2)一次函数的图像
2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。
二、目标和目标解析
1、教学目标的确定
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的'认知点,心理特点和本课的特点来制定教学目标。
知识目标
(1)能用两点法画出一次函数的图象。
(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。
能力目标
(1)通过操作、观察,培养学生动手和归纳的能力。
(2)结合具体情境向学生渗透数形结合的数学思想。
情感目标
(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。
2、教学重点、难点
用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。
三、教学问题诊断分析
1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。
2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。
3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
四、教学支持条件分析
恰当运用现代教育技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。
五、教学过程设计
(一)、设疑,导入新课(2分钟)
通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 一次函数的图象。(板书课题)
✧ 一次函数的应用课件 ✧
尊敬的各位评委老师:
大家上午好!今天我说课的题目是九年级《一次函数》复习课,所选用的教材为新人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析
1、教材的地位和作用
本章教材是初中数学八年级第十四章的内容,是初中数学的重要内容之一。一方面,这是在学习了函数概念的基础上,对函数知识的进一步深入和拓展;另一方面,又为学习反比例函数、二次函数等知识奠定了基础,是进一步研究数学应用的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
针对即将面临中考的学生来说,在具有了一定知识的基础上,培养他们分析问题和解决问题的能力尤为重要,因此本节课除了让学生进一步熟悉本章知识以外,重在培养学生的能力。从认知状况来说,学生在此之前已经学习了函数的定义,对函数的三种表示法已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于一次函数的性质的理解和应用,仍然是部分学生所存在的困惑,所以在教学过程中要充分利用一些函数的图象,通过直观教学让学生更加深入的理解一次函数的性质。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数的定义及性质的理解。
难点确定为:一次函数的性质在实际问题中的应用。
二、教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为: 1.知识目标:理解一次函数的定义及其性质
2.能力目标: 通过一次函数性质及其应用的学习,培养学生观察分析、类比归纳的探究能力,加深对数形结合、分类讨论等数学思想的认识。
3.情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。,由于本节课是复习课,为了有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 基础知识回顾:
设计意图:由于学生已经有一段时间未系统接触过本章知识,所以部分学生难免会出现或多或少的遗忘,所以,为了更好地利用这些知识,有必要将本章知识进行系统的回顾,使学生头脑内部建立关于本章的一个系统的知识结构,为知识的利用奠定基础。 (2) 典型例题:
设计意图:一次函数的知识是中考的热点,也是难点,所以我在这一环节精选了一些典型的中考题作为例题,一方面通过例题规范学生的解题过程,另一方面也让学生对中考试题有个初步的了解,让学生知道中考题并不像他们想象的那样困难,激发学生的学习积极性。通过这一环节,学生的恐惧心理基本消除,为下面的尝试应用做了铺垫。 (3)尝试应用:
设计意图:本章知识已经在学生头脑中达到了系统化的掌握,而且上面的例题也为学生提供了一些解题的方法和规范的解题格式,所以在这一环节学生通过练习既巩固了知识,有提高了学生解决问题的能力。而且通过学生解题,进一步使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。 (4)走近中考:
设计意图:中考中重在考察学生对数学知识的应用能力,所以在这一环节,通过两个典型的中考题,让学生自己尝试解决,切实认识到一次函数在实际生活中的应用,并通过自己亲自解决中考题而增加他们对中考的信心。还有就是通过节水的问题培养学生爱护水资源和节约用水的意识。 (5) 谈谈你的收获:
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识; ② 通过本节课的学习,你最大的体验是什么; ③ 通过本节课的学习,你掌握了哪些学习数学的方法?
以上就是我对本节课的设计思路,如有不足之处,望各位评委老师多多批评指正,谢谢!
✧ 一次函数的应用课件 ✧
本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。
一、有效的“复习回顾”
学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。
二、有效的“新知探究”
根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。
三、有效的“拓展延伸”
设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题、并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。
四、有效的“感悟收获”
通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。
五、有效的“巩固提高”
通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。
六、有效的“作业布置”
根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。
✧ 一次函数的应用课件 ✧
一、主题:一次函数基础知识概述一次函数是初中数学中的一种重要的概念,也是高中数学的基础。一次函数的定义是y=kx+b,其中k和b都是常数,x和y分别代表函数中的自变量和函数值。本教案将对一次函数的基础知识进行概述,包括一次函数的定义、一次函数的图像和性质以及一次函数的应用。
二、相关知识点介绍
1. 一次函数的定义
一次函数是指函数的表达式为y=kx+b的函数,其中k和b是常数,x为自变量,y为函数值。其中k称为一次函数的斜率,b称为一次函数的截距。
2. 一次函数的图像和性质
一次函数的图像是一条直线,斜率k决定了直线的斜率方向和倾斜程度,截距b决定了直线与y轴的交点。一次函数的性质包括:斜率为正数,则函数单调递增;斜率为负数,则函数单调递减;斜率为0,则函数为常函数;截距为0,则函数经过原点。
3. 一次函数的应用
一次函数在实际问题中有广泛的应用。例如,通过分析销售数据,可以得到销售额和销售量之间的一次函数关系式,以此来预测未来的销售额和销售量;通过分析工资和工龄之间的一次函数关系式,可以了解员工工资的增长趋势和未来的工资水平。
三、教学方法
1. 概念讲解法:通过对一次函数的定义、图像和性质等核心概念的讲解,使学生对一次函数的基本概念有一个初步了解。
2. 例题演练法:通过多种类型的例题演练,让学生进一步掌握一次函数的基础知识和应用技巧。
3. 课堂练习法:在讲解完基础知识和例题演练后,通过一些小测验或课堂练习等形式,帮助学生巩固所学知识。
四、实施教学过程
1. 通过让学生观察实际物体的图像,引导学生认识到图像中的直线是一种很常见的几何图形,并引出一次函数。
2. 对一次函数的定义和核心概念进行讲解,并通过实例和图像进行演示。
3. 对一次函数的图像进行讲解,并说明图像的基本性质。
4. 引导学生通过图像和方程相互转化的方式,进一步掌握一次函数的性质和基本技巧。
5. 通过多种类型的例题演练和课堂练习,帮助学生深入掌握一次函数的知识点和应用技巧。
6. 布置作业,让学生巩固所学知识,并在下节课上进行讲解和订正。
五、教学反思
一次函数是数学学科中的基础概念,不仅在初中阶段会接触,也是高中数学中的重要知识点。通过本教案的实施,使学生对一次函数的定义和基础知识有了较深入的了解,并且能够较好地掌握相关的应用技巧。通过让学生学习一次函数的基础知识,不仅可以提高学生的数学素养和应用能力,还可以培养学生的数学兴趣和创新精神,为学生的未来发展打下良好的数学基础。
✧ 一次函数的应用课件 ✧
一、说教材
《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。从知识内容来说,本课是对函数的进一步认识与综合,进一步发展学生的抽象逻辑思维,渗透建模思想。函数本身是反映现实世界变化规律的重要模型,教材在编排上充分体现了从实际生活情境中抽象数学问题,建立模型并形成概念的过程,并将正比例函数纳入一次函数的研究中,力图通过实例从代数表达式的角度认识一次函数。从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。本课的知识起到了承前启后的作用,也符合学生的认知规律。
二、说学情
八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系 更多说课稿
因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。
三、说教学目标
教学目标是教学活动实施的方向和预期达到的结果,是一切教学活动的出发点和归宿。精心设计了如下的教学目标:
(一)知识与技能
理解一次函数和正比例函数的概念,体会之间的联系,并能根据已知生活情境给出一次函数解析表达式,发展抽象概括能力。
(二)过程与方法
经历动手试验、规律探索的活动过程,提高抽象思维能力,并借助于将实际生活情境转化为数学问题,渗透建模思想。
(三)情感态度与价值观
在知识的探求过程中提高学习数学的兴趣,提高数学的应用意识。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点
一次函数和正比例函数的概念。
(二)教学难点
能根据具体生活情景给出具体一次函数解析表达式。
五、说教法和学法
在教学过程中不仅要使学生“知其然”,还要使学生“知其所以然”。我们在师生极为主体也为客体的原则下展现获取理论知识,解决实际问题方法的思维过程。
基于本节课内容的特点,我主要采用的教法有:
情境教学法:借助具体情境等活动形式获取知识,以学生为主体,使学生的独立探索性得到充分发挥。
讲解法:通过口头讲解、扼要板书,向学生描述情境,叙述事实,阐明规律,有利于系统获得新知。
练习法:学生自主练习,夯实理论知识的基础上实现灵活运用。
在教学中,精心设计每个教学环节,引导学生积极地参与讨论、合作交流,各抒己见。这样既能启迪思维,又增加了合作的意识,形成平等、宽松、民主的学习氛围。同时也能让学生动手、动脑去探索发现,并解决问题,真正体现以学生为主体的教学理念。在特定的情境中学习能激发学生学习兴趣,激发学生思维,转变学生的学习方式,变要我学为我要学。因此在学法上我采用的是小组讨论法、分析归纳法、总结反思法。
六、说教学过程
教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:
(一)导入新课
在这一环节,我会借助生活中所熟悉的情境引发学生独立思考,并要求学生尝试给出具体函数解析表达式。
问题1: 我校初二年级组织学生到距离学校6千米的动物园参观,小茗同学没赶上学校的包车,于是打算改乘出租车。出租车的收费标准如下:行驶3千米以内(含3千米)收费7元;超过3千米,每增加1千米,另收1.6元。思考:行驶千米数x和车费y(元)之间存在的函数关系?
问题2:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克,弹簧长度y增加0.5厘米,思考:x与y的函数解析表达式?
问题3:给汽车加油的加油枪流量为25L/min,用y(L)表示油箱中的油量,x(min)表示加油的时间,如果加油前油箱里没有油,那么在加油过程中,油箱里的油量与加油时间之间有怎样的函数关系?如果加油前油箱里有6L油,函数关系式又是?
此时学生将生活实际问题抽象成数学模型,给出函数解析表达式: 1、y=7+1.6(x-3)=1.6x+2.2;2、y=3+0.5x;3、y=25x、y=25x+6。下面要求学生对上述解析表达式观察并尝试指出变量与常量、因变量与自变量,对表达式进行总结归纳,得出共同特征: 左边都是因变量y,右边是含自变量x的代数式,自变量和因变量的指数都是一次。在此基础上提问,如果将上述解析表达式中的常量用k和b来替换,如何书写函数解析表达式来引导学生总结归纳、建立概念,顺势引入课题。
(设计意图:在这一环节,借助生活中所熟悉的情境来构建数学模型,尝试给出函数解析表达式,总结归纳,建立概念。一方面可以回顾之前所学的函数知识,指出变量与常量、自变量与因变量,另一方面可以培养学生总结归纳,概括能力。)
(二)探究新知
在这一环节,就前面所提出的问题建立概念:一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数,其中x是自变量,y是x的函数。特别地,当b=0时,y=kx(k为常数,且k≠0),y叫做x的正比例函数。紧接着对正比例函数和一次函数解析表达式的结构特点引导学生尝试总结其联系和区别,总结得出:正比例函数是特殊的一次函数,而一次函数不一定是正比例函数。
接下来借助师生活动,要求学生用函数表达式表示下列变化过程中两个变量之间的关系,并指出其中的一次函数、正比例函数,能根据所给条件写出简单的一次函数表达式。
1、 正方形面积S随边长x变化而变化;
2、 正方形周长l随边长x变化而变化;
3、 长方形的长为常量a时,面积S随宽x变化而变化;
4、 高速列车以300km/h的速度驶离A站,列车行驶的路程y(km)随行驶时间t(h)变化而变化;
5、如图,A、B两站相距200km,一列火车从B站出发以120km/h的速度驶向C站,火车离A站的路程y(km)随行驶时间t(h)变化而变化;
学生独立思考,踊跃回答,发现1不是一次函数;2是正比例函数,解析表达式为l=4x;
3是正比例函数,S=ax,其中a为常数;4是正比例函数,y=300x;5是一次函数,y=200+120t。
紧接着乘胜追击要求学生找出上述一次函数解析表达式中的k、b的值。在学生回答的
基础上,即时巩固一次函数的概念,并强化对k、b的认识。
为了夯实对一次函数概念的理解,并发展建模意识,启发学生思考独立思考,小组合作,并实时点拨,最后请小组代表发表组内结果。出示例题:一盘蚊香长105cm,点燃后,每小时缩短10cm,
1、写出蚊香点燃后的长度y(cm)与蚊香燃烧时间t(h)之间的函数表达式;
2、该盘蚊香可燃烧多长时间?
学生分析题干中的已知条件,建立等量关系,得出蚊香点燃后,每小时缩短10cm,t小时将缩短10t cm,所以蚊香点燃后的长度与燃烧时间之间的函数表达式为:y=105-10t;若蚊香燃尽,即y=0,由105-10t=0可得,
,该盘蚊香可燃烧10.5小时。
(设计意图:本环节尝试引导学生在层层设置的问题串中寻求答案,认识一次函数,并能找出其中k、b的值,从而让学生真正体会一次函数的数学应用价值。此外借助师生活动、独立思考,尝试发现,理解一次函数和正比例函数的差异,加以区别。此过程充分调动学生学习数学的积极性,也有利于学生在新知中尽情地探索。此外通过设置活动,引导学生动手操作、动脑思考、小组讨论来发现数学问题,并自主验证结论,最后师生共同归纳得出结论。整个环节让学生明晰了数学问题的探究过程。)
(三)深化新知
请学生思考:正比例函数和之前所学的正比例是否为同一概念?
学生结合之前的知识,体会正比例函数是指形如y=kx+b(k、b为常数,且k≠0),且b=0时,此时y=kx(k为常数,且k≠0),则y叫做x的正比例函数,而正比例是两个变量之间的关系,当一种量变化,另一种量也随之变化,如果这两种量相对应的两个数的比值一定,则这两个量就成为成正比例的量,它们的关系叫做成正比关系。
(设计意图:本环节在夯实学生旧知的基础上对学生易混淆的知识点进行整理,有利于学生建立良好的逻辑知识体系。)
(四)巩固提高
在这一环节,我会设置随堂练习:
我国目前实行个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于4000元的部分征收3%的个人所得税,如某人每月收入为3900元,则他应缴个人工资、薪金所得税为(3900-3500)*3%=12元。
1、当月收入大于3500元而小于4000元时,写出应缴纳的所得税y(元)与收入x(元)
之间的关系式;
2、某人月收入为3850元,他应缴纳的所得税是多少元?
要求学生独立完成,同桌互相交流,教师适时纠正答案。
(设计意图:通过这样的变式练习,深化认识一次函数的同时,也容易激发起学生的探索欲望。而且这个环节教师充分指导学生汇报展示,完成任务,将学习的主动权完全还给学生,让学生真正成为学习的主人。)
(五)小结作业
在小结环节,我会让学生回答以下问题:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?
(设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获。小学的课堂应着重让学生体会知识的获得过程,并能真正学会将所学的知识应用到实际生活,能发现生活中的数学问题。)
而作业环节,请同学们完成练习题目,实现对课堂知识点的实时巩固。
1、在函数y=-2x-5中,k=,b=;
2、在一幢25层高的建筑物,如果底层高6米,以上每层高4米,求楼高h(米)与层数n之间的函数关系式,并写出自变量的取值范围。
七、说板书设计
我的板书本着简洁、直观、清晰的原则,这就是我的板书设计。
✧ 一次函数的应用课件 ✧
一、学习课题: 一次函数的性质
二、教学目标: 1.掌握一次函数的性质.2.能够利用一次函数的性质解决简单的实际问题.3.经历探索一次函数性质的过程,提高学生数形结合意识,培养数形结合的能力.
重点:理解一次函数(含正比例函数)的性质;
难点:利用一次函数性质解决有关问题。
三、学习过程:
(一)读一读:
自主学习课本第44页第45页的内容,完成以下题目: 1.画出一次函数y=23 x+1和y=3x-2的图象
探究当x增大时,y的值将随着x怎样变化?同学们发现什么现象?
2、画出函数y=-x+2和y=-
x-1的图象。
仿照以上研究方法,研究它们是否也有相应的性质,有什么不同? 你能否发现什么规律?
3、归纳概括:
一次函数y=kx+b有下列性质:(1)当k>0时,(2)当k<0时,(二).练一练:
1.已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小? 已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.3.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.(1)求m的值;(2)当x取何值时,0<y<4?.4、画出函数y=-2x+2的图象,结合图象回答下列问题.(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y>0?
(三)、比一比(看谁做的好)
1.已知点(x1,y1)和(x2,y2)在一次函数y=-3x+2的图象上,且x1 ②当k取何值时,函数图象经过坐标系原点? ③当k取何值时,函数图象不经过第四象限? 4.已知函数y(m1)xm2m1m,当m为何值时,这个函数是一次函数.并且图象 经过第二、三、四象限? 5..已知关于x的一次函数y=(-2m+1)x+2m2+m-3.(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m的值;(2)若一次函数的图象经过点(1,-2),求m的值.6.已知点(-1,a)和1 22,b 都在直线y3x3上,试比较a和b的大小.你能想出几种 判断的方法? (四)谈一谈:让学生自由发言,谈出本节课的收获,解答此类问题的关键。 (五)评一评: 一、说教材: 1、教材所处的地位和作用: 《一次函数的图象》是人教版九年义务教育三年制初级中学教科书初中八年级(上册)第三节内容,在此之前,学生已学习了如何画一次函数的图象基础上,这为过渡到本节的学习起着铺垫作用。本节内容可以强化学生对前面所学知识的理解,使学生对研究函数的图象和性质的基本方法有一个初步的认识与了解,为今后讨论二次函数和反比例函数的有关问题奠定基础。一次函数的图象加强了代数与几何的联系。 2、教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: (1)、知识目标: 1)了解正比例函数y=kx的图象的特点。 2)会作正比例函数的图象。 3)理解一次函数及其图象的有关性质。 4)能熟练地作出一次函数的图象。 (2)能力目标: 通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,从函数解析式到图像,从图像到解析式的探索,向学生渗透数形结合的思想方法和数学能力,同时也培养学生从特殊到一般,再从一般到特殊的辨证认识能力。 (3)情感目标: 通过对一次函数图象的教学,引导学生从实际出发,在课堂教学过程中,营造轻松愉快的气氛,充分调动学生的学习积极性参与到课堂中,体验探索、发现的乐趣,从而增强学生的参与意识,团结合作的精神和学习数学的兴趣。使学生了解数学知识的功能与价值,形成主动学习的态度。 3、说教学重点、难点: 1、从知识的联系来说,一次函数的性质是有关一次函数这一部分内容的重点,也是本章的重点内容之一,因此把一次函数的性质的探索作为本课时的教学重点。 2、由图像归纳性质是学生首次接触,没有明确的思路,而且学生思维的全面性和深刻性也不够,对有图像归纳性质还存在相当大的困难,因此由图像探索性质是本课时的教学难点。 二、说教法 数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:应着重采用数形结合的教学方法。即:数形结合----列举归纳法、由特殊到一般的'方法、类比法。根据本课时的教学内容特点以及本班学生的实际,我采用启发式、讨论式等教学方法。在引入新课时,通过复习一次函数的图象的知识,引导启发学生观察一次函数的图象特征,分析图象的特征与一次函数的自变量、因变量的联系,归纳出一次函数的性质,使学生由感性认识上升到理性认识。在归纳一次函数的性质时,采用讨论式教学法,充分调动学生的积极性参与到对一次函数的性质的讨论中,再根据学生的讨论归纳情况进行适当的补充。整个教学过程采用愉快教学法,营造一个轻松愉快的课堂气氛,充分调动学生的情感因素,努力实现“师生互动”、“生生互动”以求达到较好的教学效果。 三、说学法 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 初步培养学生用事物相互联系和发展变化的观点来分析问题,从而认识事物之间是相互联系和有规律地变化着的。培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力。要让学生由“学会”到“会学”。通过本节课的教学,指导学生掌握一些基本的学习方法,运用数形结合的研究方法探索函数知识;通过相互交流讨论,团结合作等方式,培养学生的自学能力和合作能力,增强学生的参与意识,使学生会运用观察、分析、比较、归纳、总结等方法探索数学知识。 四、说学情 本班学生整体素质不高,课堂参与、自主探究意识不强。初二学生正处在感性认识到理性认识的转型期,对一次函数的性质的理解存在很大的困难。 五、说教学程序 1、复习回顾 启发学生回忆:“一次函数Y=kx+b(k≠0)的图象是一条直线”,同时强调一次函数的图象的位置是由常数k、b决定,从而很自然地引入新课。 2、新知探索 先给出一组一次函数解析式,引导学生动手画出它们的图象,然后带出问题并引导学生观察图象,结合图象进行交流讨论,最后归纳总结一次函数的性质。 (1)在同一直角坐标系中画出下列函数的图象 (1)Y=2x+1,(2)y=-2x-1,(3)y=3x+2(4)y=-3x+2 (2)引导学生带着问题观察图象、探索一次函数的性质 问题1:从左到右,随着x增大,函数y=2x+1和y=3x+2的图象上的点的位置有什么变化?函数值y又有什么变化呢? 问题2:同样,随着x的增大,函数y=-2x-1和y=-3x-2的图象上的点有什么变化呢?函数值呢? 问题3:为什么会有这样的差别呢? 3、归纳总结 (1)当k>0时,y随着x的增大而增大,这时函数的图象从左到右上升; (2)当k 3、课堂练习 课本P45的“做一做”及练习的第1、2题,这些练习是为了加深学生对一次函数的性质的理解,紧紧抓住了本课时的重点。 4、小结 引导学生回顾本课时所学知识,进一步加深对一次函数的性质的理解。 六、说反思 在整个备课过程中,我力求做到既要备好教材又要备好学生,努力做到既紧进围绕本课时的教学重点又要结合本班学生实际。但作为以为年轻教师还缺乏教育教学经验,还有很多地方向同行学习,特别是教学语言、教学方法、课堂组织等方面更要学习。 一次函数是学生在学习了正比例函数、反比例函数等知识基础上进行学习的,因此学生对一次函数比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握一次函数的概念、图象性质以及实际应用。巩固练习中,从基本练习、例题精讲一直到巩固练习,设计均有层次,有坡度。 这是一节章节复习课,虽然课程容量大,内容又较抽象,但采用了先进的多媒体辅助教学,使本课教学的知识概念变得具体、生动、可信。 本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。 本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。 不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。✧ 一次函数的应用课件 ✧
✧ 一次函数的应用课件 ✧
我们精彩推荐一次函数的应用课件专题,静候访问专题:一次函数的应用课件