导航栏

×
你的位置: 检讨书大全 > 检讨书范文 > 导航

全等三角形教案(热门13篇)

发表时间:2020-09-05

全等三角形教案(热门13篇)。

〚1〛全等三角形教案

对应角相等

2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

5 边边边公理(SSS) 有三边对应相等的两个三角形全等

三角形全等的性质

1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.全等三角形的对应边上的高对应相等。

4.全等三角形的对应角的角平分线相等。

5.全等三角形的对应边上的中线相等。

6.全等三角形面积相等。

7.全等三角形周长相等。

公式要领总结:斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

〚2〛全等三角形教案

1、本节课的教学重点是能利用三角形全等的条件解决生活中的实际问题。多媒体课件的使用能多方面的补充黑板教学中的不足,使一些景物更直观、演示更生动,在三角形全等的图形中多媒体画图也有很大的优势,能让各种线条动起来、还有颜色的不同都能让学生一目了然,让生活中的数学能更加完美地呈现在学生的眼中。

2、在本节课里,首先创设了一个“现实情境”,使学生的练习具有“真实”地解决问题的意味,然后用角色模拟的方法进行自由而舒畅的交流活动。先让学生充分发表意见,并给予激励性的评价,培养学生主动运用所学知识寻求发现问题和解决问题的能力。

〚3〛全等三角形教案

大家好!今天我说课的题目是《探索三角形全等的条件》(第一课时)。根据新课标的理念,对于本节课我将以教什么,怎样教,为什么这样教为思路,将从以下几方面加以说明。

一、教材分析

本节课是北师大版教科书七年级下册第五章第四节的内容。本节教学共分三个课时,本节课是第一课时,主要内容是探索三角形全等的条件(“SSS”)和三角形的稳定性。它是在学生学习了三角形的有关性质以及全等图形特征的基础上,进一步研究三角形全等的条件,它是学习三角形全等的其他判别方法的核心内容,也是初中数学的重要内容之一。

二、学情分析

由于初二的学生对几何的认识还很有限,根据学生已有的认知结构,这是第一次系统的学习三角形,本节课要创造条件和机会,让学生发表见解,充分发挥学生的主动性。

三、教学目标分析

根据学生已有的认知结构,以及教学内容的地位和作用,我拟定本节课的教学目标为:

(1)知识目标:掌握三角形全等的“边边边”条件并初步学会运用,了解三角形具有稳定性及其应用。

(2)能力目标:在学习过程中,让学生体验分类思想、有条理地思考、分析、表达,逐步培养学生的推理意识和能力。

(3)情感目标:让学生体会数学在生活中的作用,增强学生学习数学的兴趣。

四、重、难点分析

教学重点:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用其解决简单的问题。

教学难点:对三角形全等条件的分析以及探索思路的选择。

为突出重点:我安排了具有一定挑战性的练习题,以引导学生熟练的掌握三角形全等的“边边边”条件。

为突破难点:利用分类思想引导孩子通过画图、观察、比较、推理、交流,在条件由少到多的过程中逐步探索出最后结论。

五、教法、学法分析:

1、教法分析

根据本节课的教学特点和学生的实际情况,我主要采用“探索式教学”、“启导式教学”。

2、学法分析

本节课主要让学生采用动手实践,自主探索、合作交流的学习方法,充分发挥学生学习的主动性。

六、教学过程分析:

(一)创设情景,提出问题

1、展示玻璃打碎的情景。

2、提出以下问题:

(1)该如何配一块和原来一样的玻璃呢?

(2)两三角形全等需概念的所有条件都满足吗?如何尽可能的少呢?

设计意图:让学生在现实情景中回顾已学知识,经历将现实问题抽象成数学模型的过程同时提出问题让学生思索,诱发新知。

(二)交流讨论,探索新知

1、探索三角形全等至少需要几个条件,在学生对导学案的处理的基础上,我组织以下教学活动:

活动一:只给一个条件(一条边或一个角)借助多媒体演示,让学生观察下列三角形:

只给定一边时(多媒体出示不同的三角形):

只给定一个角时(多媒体出示不同的三角形):

然后引导学生通过比较,从而认识到:

只给出一个条件时,不能保证所画出的三角形一定全等.

设计意图:让学生从简单的情况入手,通过动手实践验证只满足一个条件时是不能画出两个三角形全等的,从而引出活动二。

活动二:

给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做(师提示).

①、三角形的一个内角为30°,一条边为3cm.

②、三角形的两个内角分别为30°和50°.

③、三角形的两条边分别为4cm、6cm.

对于活动二先让学生汇报(导学案)有几种情况,体会分类讨论的必要性,然后把学生分为三组,每组分别去解决其中的一个问题,再让各组学生展示学生所画的三角形,并交流解决的方法及获得的结论。

小组一:解决问题①、三角形的一个内角为30°,一条边为3厘米。

画出的三角形几乎都不一样。(多媒体演示)

结论:这三个三角形不全等。

小组二:解决问题②,三角形的两个内角分别是30°和50°,画的三角形形状一样,但大小不一样。(多媒体演示)

结论:这两个三角形不能重合,即不全等.

小组三:解决问题③、三角形的两边分别为4cm、6cm,所画出的三角形也不全等。

(多媒体演示)

师总结:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那么给出三个条件时,又怎样呢?

设计意图:让学生初步体会分类思想,有两个条件满足时两个三角形能否全等,应该如何去划分(两边、两角、一边一角)本环节也是为下一活动满足三个条件是两三角形是否全等做铺垫。

活动三:

接着提出以下问题:如果给出三个条件画三角形,你能说出有哪几种可能的情况?

引导学生将要解决的问题转化为在三角形的3个角和3条边中取3个条件,有几种情况。让学生体会分类讨论的方法。本节课主要研究给出3个角和3条边的情况

2、探索三角形全等的条件:边、边、边

(1)已知一个三角形的三个内角分别为40°,60°,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?

(2)已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?

对于问题(1)鼓励学生去思考,只要学生能列举出反例即可,多媒体演示下图:

对于问题(2)先引导学生交流画法,多媒体演示画法,然后鼓励学生去画,并将所画的三角形剪切与同伴的是否重合。在此基础上教师提出:你能发现什么结论?你是如何获得的?若改变三角形三边的取值,你能得到同样的结论吗?

学生活动:几个同学一组画三角形,并将所画的三角形剪切,判断其能否重合,并总结所获得的结论。

师总结:三边对应相等的两个三角形全等,简写:“边边边”或“SSS”

设计意图:让学生运用用分类思想,通过动手实践,自主探究与合作交流的学习方式进行学习。在这里老师一方面引导学生动手去画,另一方面鼓励学生合作交流。通过合作交流激活学生思维,感受反例的作用,使学生在活动中归纳总结出结论,培养学生的语言表达能力。

(三)巩固新知,探索性质(多媒体展示)

1、如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。

2、如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件

设计意图:安排具有一定挑战性的练习题,引导学生熟练掌握三角形全等的“边边边”条件,逐步培养学生的推理意识和能力。

以上是研究三角形全等的条件,下面我们一起来看一看三角形具有什么性质。

活动四:

取出课前用长度适当的硬纸条和大头针自制的三角形和四边形,并拉动它们。(多媒体演示,展示生活中的应用)

得出结论:三角形具有稳定性,四边形具有不稳定性。你能举出生活中的应用吗?

设计意图:让学生从身边的事物中学习数学、理解数学、应用数学、感受数学的魅力。使学生对数学的学习产生浓厚的兴趣。

(四)发散思维,强化新知

1、如图,AB=AC,BD=CD,H是BC的中点,指出图中全等三角形,它们全等的条件是什么?

2、四边形ABCD中,AB=CD,AD=BC。△ABC和△CDA是否全等?∠A=∠C吗?说明理由。

设计意图:教师创造条件让学生面对具有挑战性的问题,能够尝试独立解决,显现出个体的差异性。在此基础上,学生相互交流,取长补短,实现有差异发展,达到共同提高。

(五)师生小结,反思提高

通过本节课你学到了什么?发现了什么?有什么收获?还存在那些没有解决的问题?设计意图:帮助学生梳理知识内容,养成自我反思的习惯。

(六)布置作业,反馈新知

我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。使每个学生都能得到不同的发展。同时也为下一节课的学习做好铺垫。

〚4〛全等三角形教案

首先,本节课我本着创设情境,以学生为主,突出重点的意图,结合学案使之得到充分的诠释。我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题,总结出概念。我通过具体练习让学生总结,并带领学生寻找快速寻找对应的方法,练习的设计采用由易到难的手法,符合学生的认知规律,突破了本节课的重点和难点。真正做到以生为本,抓住课堂45分钟,突出效率教学。

其次,我在结尾总结全等三角形时让学生在生活中寻找实例,体现了数学与生活的联系,培养数学兴趣。

〚5〛全等三角形教案

全等三角形证明题

1 在直角坐标系中,有两个点A(2,4) B(-2,-4), (即A.B两点是

关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别

连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!

2有一个正方形,分别连接它的对角,求其中的全等三角形?

3 一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?

4 在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,

求平移后的三角形和原料的三角形是否全等?

5 有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形

6 一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,

角形CDA全等.

8等腰梯形ABCD对角相连求全等的三角形?

11 三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)

12 三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等

AE垂直 BD,所以 角 EAC=角 DBA (为什么?因为角EAC+角BAE=90度,而角 BAE+角DBA=90度,所以 角 EAC=角 DBA )

∵∠DEC=50°

∴∠BEC=180°―∠EDC=180°―50°=130°

∴∠EBC=∠ECB=(180°―∠BEC)×(1/2)=25°

〚6〛全等三角形教案

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点

正确寻找全等三角形的对应元素

难点突破

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:

课件、三角形纸片

教学过程

一、出示学习目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素。

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

二、直观感知,导入新课

教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知

1.全等形

我们给这样的图形起个名称----全等形。[板书:全等形]

教师让学生们想生活中还有那些图形是全等形.

2.全等三角形及相关对应元素的定义

教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:12.1全等三角形]

2.全等三角形的对应元素及表示

把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

以多媒体上的图形为例,全等三角形中的对应元素

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

.用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

3.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

4.小组活动合作升华

学生分小组动手操作摆图形

小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

三、巩固练习

四、教师用多媒体展示习题,学生做巩固练习。

五、小结:本节课都学到了什么

六、作业:

必做题课本33页习题第1题、2题.

选做题课本第34页第6题。

〚7〛全等三角形教案

本节课的目标是应用三角形全等的条件(SAS)证明简单的三角形全等问题,进而得出线段或角相等。

本节课探索三角形全等的判定方法二,是本章的重点也是难点。教材看似简单,仔细研究后才发现对八年级的学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,以及让学生判定时注意寻找条件的时候是两边夹角。通过让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。

反思整个过程,我觉得做得较为成功的有以下几个方面:

1、教学设计整体化,内容生活化。在课题的引入方面,以学生动手做、裁剪三角形,这既复习了全等三角形的定义、判定方法一,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。

2、把课堂充分地让给了学生。上课时我常对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导学生让它们发现问题并通过动手操作、交流讨论来解决问题。

3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作、画图,最后同学们都不约而同地得出了三角形全等的判定方法:“边角边公理”,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称“SAS”。

但也有几处是值得思考和在以后教学中应该改进的地方:

1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得探讨。

2、课堂上学生的操作应努力做到学生自发生成的,而不是让老师提议,应换为自发地比较更好。

3、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍是不理解。

〚8〛全等三角形教案

学科知识的类型及教学对象:

从全等三等形旋转变换的角度去寻求两个三角形全等的条件;

2.会用“相等的'角加上中间的部分,得到新的一对相等的角”的解题技巧。

如图,CA=CA,∠1=∠2,BC=EC.求证:AB=DE.

归纳:证明的关键点是:∠1=∠2,然后都加上中间的∠______,得到∠_____=∠_____

例2[原题课本P83第12题]

证明的关键点:

∵∠DAB=∠EAC=60°

练习1:如图AB=DB,BC=BE,要使△AEB≌△DCB, 则需增加的条件是 ( )

练习2:(例2变式)如图,△ABD和△AEC都是等边三角形,求证:BE=DC.

1.将两道貌似不相关的题,通过“全等三角形的旋转变换”联系起来,指出它们的本质及证明的关键点其实是一样的。

2.用几何画板动态演示旋转变换,直观性强,更易理解。

〚9〛全等三角形教案

课题:全等三角形

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、 找对应边、对应角以及全等三角形性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

思考题:

板书设计:

探究活动

(2)证明 :AF∥DE

〚10〛全等三角形教案

[教学目标]

1。会说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。

2。知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角。

3。会说出全等三角形的对应边、对应角相等的性质。

此外,通过把两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意思。

[引导性材料]

我们身边经常看到一模一样的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的'例子。

说明:让学生在举出实际例子以及对所举例子的辨析中获得对全等图形尽可能多的精确的感知。

[教学设计]

问题1:几何中,我们把上述所例举的一模一样的图形叫做全等形,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?

(l)形状相同的两个图形叫全等形。

(2)大小相等的两个图形叫全等形。

(3)能够完全重合的两个图形叫全等形。

(学生阅读课本第21页,全等三角形的有关概念、全等三解形的表示方法。)

操作和观察(学生用两块透明塑料片叠合在一起,任意剪两个全等的三角形,教师制作两个全等三角形的复合投影片演示。)

(1)将重合的两块全等三角形塑料片中的一个沿着一边所在的直线移动,观察移动过程中这两个三角形有哪几种不同位置?画出这两个全等三角形不同位置的组合图形。

(2)图3。4—1是上述移动过程中的两个全等三角形组合的图形,说出它们的对应顶点、对应边、对应角。

(3)将重合的两块三角形塑料片,以一边所在的直线为轴,把其中一个三角形翻折180,请你画出翻折后的两个全等三角形组合的图形。

(4)将两块全等的三角形塑料片拼合成如图3。4—2中的图形,并指出它们的对应顶点、对应边、对应角。

[小结]

1。识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点。

2。用全等三变换的方法观察图形,有助于正确、迅速的从复杂图形中识别出全等三角形。

[作业]

课本3。2A组第2、3、4题。

〚11〛全等三角形教案

篇1:全等三角形的判定定理<\/h2>

一、

二、

全等三角形。 教学内容:探索三角形全等的判定(ASA,AAS),以及利用全等三角形证明。 学情分析:学生已经学习全等三角形的概念以及掌握了运用SSS与SAS来证明

教学目标: 三、

1、 知识与技能:理解“角边角”、“角角边”判定三角形全等的方法;

2、 过程与方法:经历探索“角边角”、“角角边“判定三角形全等的过程,能运用已学三角形判定方法解决实际问题;

3、 情感态度与价值观:培养良好的集合推理意识,发张数学思维,感悟全等三角形的应用价值。

四、 教学重、难点:

重点:掌握三角形全等的判定方法――“ASA”、“AAS”

难点:三角形全等判定“ASA”、“AAS”定理的应用。

五、

六、 教学用具:电脑课件,三角板,纸片 教学过程:

(一) 创设情境

老师不小心将一个三角形玻璃打碎为两块,想要去商店配一块跟原来一样的三角形玻璃,要带两块去呢还是带一块就行了呢?如果带一块的话,要带那一块呢?

(引导学生思考,第一块不只能画一个三角形,第二块根据两边延伸只能确定一个三角形,所以只需要带第二块)

问:那我们从第二块玻璃可以得到关于三角形的什么信息呢?

学生答:两个角和一条边。

师;那老师是不是可以不带然和一块玻璃,通过测量这两个角和它们的夹边就可以呢?我们根据这些信息买来的新三角形玻璃和原来的是不是就完全一样呢?也就是说,能不能通过“角边角“来判定两个三角形是否全等呢?

(二) 探究新知:

2、师:这样我们就得到了证明三角形全等的另外一个判定定理,即“有两个角及它们的夹边对应相等的两个三角形全等”,要注意的是这条边必须是两个角所夹的边,同时要注意这三个元素一定要是对应相等的。

3、给出两个全等三角形规范证明过程;

书写格式:

篇2:全等三角形的判定定理<\/h2>

4、 练习巩固:

如图,已知△ABC≌△A'B'C',CF,C'F'分别是∠ACB和∠A'C'B'的角平分线,求证

:CF=C'F

5、 探究“角角边”是否也能证明两个三角形全等

今天我们学了哪几种三角形全等的判定方法呢?

我们要记住这两节课所学的判定三角形全等的方法,下节课我们也将会学习另一种判定方法,大家可以先回家研究一下还可以怎样证明。

篇3:三角形判定定理<\/h2>

全等的条件:

1、两个三角形对应的'三条边相等,两个三角形全等,简称“边边边”或“SSS"。

2、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。

3、两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。

4、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。

5、两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。

注意,证明三角形全等没有“SSA”或“边边角”的方法,即两边与其中一边的对角相等无法证明这两个三角形全等,但从意义上来说,直角三角形的“HL”证明等同“SSA”。

篇4:全等三角形判定课件<\/h2>

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的.创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、 找对应边、对应角以及全等三角形性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

有公共边的,公共边一定是对应边;

有公共角的,角一定是对应角;

有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

全等三角形的性质

性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

思考题:

板书设计:

探究活动

(2)证明 :AF∥DE

篇5:相似三角形判定定理<\/h2>

相似三角形的对应角相等.

相似三角形的对应边成比例.

相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.

相似三角形的周长比等于相似比.

相似三角形的面积比等于相似比的平方.

相似三角形的传递性

如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

篇6:相似三角形判定定理<\/h2>

直角三角形被斜边上的高分成两个直角三角形和原三角形相似.

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

〚12〛全等三角形教案

教材内容分析:

本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。

全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。

教学目标:

1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图 能力;

3.让学生通过观察生活中的全等形和动手操作获得全等三角形 的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。

教学准备:

1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。

教学流程: 创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。

1、与学生谈话,努力走近学生之中。

引导:

2、两副图形形状、大小若相同该如何检验?

定义:能够完全重合的两个图形叫做全等形; 列举生活中的实例(一百元人民币)感知全等形。

用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。

引导观察:课件操作演示两个三角形完全重合。 引导学生类比得出全等三角形定义;

能够完全重合的两个三角形叫做全等三角形 引导学生概括对应顶点、对应边、对应角定义;

全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。

引导学生书写全等三角形的表达式:△ABC≌△DEF,读作 :△ABC全等于△DEF。

温馨提示:

①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上 。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。

引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题

全等三角形的性质:全等三角形的对应边相等,对应角相等。 用几何语言表达全等三角形性质: ∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;

∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)

利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?

通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。

引导学生观察,交流探索规律。 在全等三角形中,一般是: 1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;

3.最大边与最大边(最小边与最小边) 为对应边;最大角与最大角(最小角与最小角)为对应角;

引导学生观察,交流发现规律。

针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。

三、合作交流,应用新知。

例:如图, △ABO≌△DCO ,指出所有的对应边和对应角。

解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)

∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等) 变式:若上图中△ABC≌△DCB ,试写出这两个三角形中相等的边和相等的角。

解: ∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)

∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)

四、课堂练习,巩固新知。

(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm, 求DE的长.

解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)

∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm

(2)如图,已知△ABC≌△ADE, 想一想: ∠ BAD= ∠ CAE吗?为什么?

∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质) 即∠BAC=∠DAE

五、师生互动,小结新知。

学习了这堂课你有哪些收获?并把它与同伴一起分享。

4、寻找全等三角形的对应边、对应角得规律。 (1)观察图形特点;

······

〚13〛全等三角形教案

知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.

过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.

情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

课前准备 全等三角形纸片、三角板、 【教学过程】:

[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?

[生]三内角、三条边、两边一内角、两内角一边.

[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.

(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

[生]两种.

1.两边及其夹角.

2.两边及一边的对角.

[师]按照上节方法,我们有两个问题需要探究.

(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

学生活动:

1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.

2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.

教师活动:

教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.

画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

1.画∠DA/E=∠A;

2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

3.连结B/C/.

将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

小结 : 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.

如图,在△ABC和△DEF中,

对于探究2:

学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:

1.画∠DB/E=∠B;

2.在射线B/D上截取B/A/=BA;

3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的.

也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.

归纳总结:

“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:

两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)

[例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?

[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.

所以AB=DE.

1.填空:

(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

2.已知:AB=AC、AD=AE、∠1=∠2(图4).

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

文章来源:https://www.jt56w.com/jiantaoshufanwen/124987.html

【全等三角形教案(热门13篇)】相关文章